MOEA/DEP: An Algebraic Decomposition-Based Evolutionary Algorithm for the Multiobjective Permutation Flowshop Scheduling Problem

  • Marco Baioletti
  • Alfredo Milani
  • Valentino Santucci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10782)

Abstract

Algebraic evolutionary algorithms are an emerging class of meta-heuristics for combinatorial optimization based on strong mathematical foundations. In this paper we introduce a decomposition-based algebraic evolutionary algorithm, namely MOEA/DEP, in order to deal with multiobjective permutation-based optimization problems. As a case of study, MOEA/DEP has been experimentally validated on a multiobjective permutation flowshop scheduling problem (MoPFSP). In particular, the makespan and total flowtime objectives have been investigated. Experiments have been held on a widely used benchmark suite, and the obtained results have been compared with respect to the state-of-the-art Pareto fronts for MoPFSP. The experimental results have been analyzed by means of two commonly used performance metrics for multiobjective optimization. The analysis clearly shows that MOEA/DEP reaches new state-of-the-art results for the considered benchmark.

Keywords

Algebraic evolutionary algorithms Multiobjective optimization Permutation Flowshop Scheduling Problem 

References

  1. 1.
    Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2017)Google Scholar
  2. 2.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  3. 3.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  4. 4.
    Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. IEEE Trans. Evol. Comput. 20(5), 682–694 (2016).  https://doi.org/10.1109/TEVC.2015.2507785CrossRefMATHGoogle Scholar
  5. 5.
    Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for the permutations search space. In: Proceedings of IEEE Congress on Evolutionary Computation CEC 2017, pp. 1587–1594 (2017).  https://doi.org/10.1109/CEC.2017.7969492
  6. 6.
    Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–286 (2016).  https://doi.org/10.3233/AIC-150695MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Santucci, V., Baioletti, M., Milani, A.: A differential evolution algorithm for the permutation flowshop scheduling problem with total flow time criterion. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 161–170. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_16CrossRefGoogle Scholar
  8. 8.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  9. 9.
    Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evolution for the linear ordering problem with cumulative costs. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 123–133. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_12CrossRefGoogle Scholar
  10. 10.
    Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Varadharajan, T., Rajendran, C.: A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur. J. Oper. Res. 167(3), 772–795 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Minella, G., Ruiz, R., Ciavotta, M.: Restarted iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems. Comput. Oper. Res. 38(11), 1521–1533 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zangari, M., Mendiburu, A., Santana, R., Pozo, A.: Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem. Inf. Sci. 397–398(Supplement C), 137–154 (2017)CrossRefGoogle Scholar
  15. 15.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  16. 16.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to theP//\(\varSigma {C_{i}}\) scheduling problem. Eur. J. Oper. Res. 132(2), 439–452 (2001)CrossRefGoogle Scholar
  18. 18.
    Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling problems. In: Proceedings of IEEE Congress on Evolutionary Computation CEC 2008, pp. 1433–1438, June 2008Google Scholar
  19. 19.
    Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combinatorial differential evolution. In: Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pp. 2135–2140 (2015).  https://doi.org/10.1109/SMC.2015.373
  20. 20.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)CrossRefGoogle Scholar
  21. 21.
    Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)CrossRefGoogle Scholar
  22. 22.
    Schutze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)CrossRefGoogle Scholar
  23. 23.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  24. 24.
    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial onthe use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)CrossRefGoogle Scholar
  25. 25.
    Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the linear ordering problem. In: Companion Material Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 1479–1480 (2015).  https://doi.org/10.1145/2739482.2764693
  26. 26.
    Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony optimization for permutation problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 960–971. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68759-9_79CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco Baioletti
    • 1
  • Alfredo Milani
    • 1
    • 2
  • Valentino Santucci
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly
  2. 2.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations