Automatic Algorithm Configuration for the Permutation Flow Shop Scheduling Problem Minimizing Total Completion Time

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10782)

Abstract

Automatic algorithm configuration aims to automate the often time-consuming task of designing and evaluating search methods. We address the permutation flow shop scheduling problem minimizing total completion time with a context-free grammar that defines how algorithmic components can be combined to form a full heuristic search method. We implement components from various works from the literature, including several local search procedures. The search space defined by the grammar is explored with a racing-based strategy and the algorithms obtained are compared to the state of the art.

Keywords

Automatic algorithm configuration Iterated greedy algorithm Iterated local search Flow shop scheduling problem Total completion time 

References

  1. 1.
    López-Ibáñez, M., Stützle, T.: The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012).  https://doi.org/10.1109/TEVC.2011.2182651CrossRefGoogle Scholar
  2. 2.
    Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Trans. Evol. Comput. 16(3), 406–417 (2012).  https://doi.org/10.1109/TEVC.2011.2160401CrossRefGoogle Scholar
  3. 3.
    KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: Satenstein: automatically building local search SAT solvers from components. Artif. Intell. 232(Supplement C), 20–42 (2016).  https://doi.org/10.1016/j.artint.2015.11.002MathSciNetCrossRefGoogle Scholar
  4. 4.
    Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016).  https://doi.org/10.1109/TEVC.2015.2429314CrossRefGoogle Scholar
  5. 5.
    Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E., Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5, pp. 287–326. Elsevier (1979).  https://doi.org/10.1016/S0167-5060(08)70356-XGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976).  https://doi.org/10.1287/moor.1.2.117MathSciNetCrossRefGoogle Scholar
  7. 7.
    Vázquez-Rodríguez, J.A., Ochoa, G.: On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming. J. Oper. Res. Soc. 62(2), 381–396 (2011).  https://doi.org/10.1057/jors.2010.132CrossRefGoogle Scholar
  8. 8.
    Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)CrossRefGoogle Scholar
  9. 9.
    Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013, vol. 7997, pp. 321–334. Springer, New York (2013).  https://doi.org/10.1007/978-3-642-44973-4_36CrossRefGoogle Scholar
  10. 10.
    Marmion, M.E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013, vol. 7919, pp. 144–158. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38516-2_12CrossRefGoogle Scholar
  11. 11.
    Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genetic Program. Evol. Mach. 17(3), 251–289 (2016).  https://doi.org/10.1007/s10710-015-9262-4CrossRefGoogle Scholar
  12. 12.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)MATHGoogle Scholar
  13. 13.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25566-3_40CrossRefGoogle Scholar
  14. 14.
    López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3(Supplement C), 43–58 (2016).  https://doi.org/10.1016/j.orp.2016.09.002MathSciNetCrossRefGoogle Scholar
  15. 15.
    McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genetic Program. Evol. Mach. 11(3), 365–396 (2010).  https://doi.org/10.1007/s10710-010-9109-yCrossRefGoogle Scholar
  16. 16.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007).  https://doi.org/10.1016/j.ejor.2005.12.009CrossRefGoogle Scholar
  17. 17.
    Dong, X., Chen, P., Huang, H., Nowak, M.: A multi-restart iterated local search algorithm for the permutation flow shop problem minimizing total flow time. Comput. Oper. Res. 40(2), 627–632 (2013).  https://doi.org/10.1016/j.cor.2012.08.021CrossRefGoogle Scholar
  18. 18.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953).  https://doi.org/10.1063/1.1699114
  19. 19.
    Dubois-Lacoste, J., Pagnozzi, F., Stützle, T.: An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Comput. Oper. Res. 81, 160–166 (2017).  https://doi.org/10.1016/j.cor.2016.12.021MathSciNetCrossRefGoogle Scholar
  20. 20.
    Framinan, J.M., Leisten, R., Ruiz-Usano, R.: Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation. Eur. J. Oper. Res. 141(3), 559–569 (2002).  https://doi.org/10.1016/S0377-2217(01)00278-8CrossRefGoogle Scholar
  21. 21.
    Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the \({P}\mid \mid \sum {C}_i\) scheduling problem. Eur. J. Oper. Res. 132(2), 439–452 (2001).  https://doi.org/10.1016/S0377-2217(00)00137-5
  22. 22.
    Rad, S.F., Ruiz, R., Boroojerdian, N.: New high performing heuristics for minimizing makespan in permutation flowshops. Omega 37(2), 331–345 (2009).  https://doi.org/10.1016/j.omega.2007.02.002CrossRefGoogle Scholar
  23. 23.
    Fernandez-Viagas, V., Framinan, J.M.: A beam-search-based constructive heuristic for the PFSP to minimise total flowtime. Comput. Oper. Res. 81(Supplement C), 167–177 (2017).  https://doi.org/10.1016/j.cor.2016.12.020MathSciNetCrossRefGoogle Scholar
  24. 24.
    Benavides, A.J., Ritt, M.: Iterated local search heuristics for minimizing total completion time in permutation and non-permutation flow shops. In: Proceedings of the Twenty-Fifth International Conference on International Conference on Automated Planning and Scheduling, ICAPS 2015, pp. 34–41. AAAI Press (2015)Google Scholar
  25. 25.
    Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Comput. Oper. Res. 36(9), 2638–2646 (2009).  https://doi.org/10.1016/j.cor.2008.11.004MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tasgetiren, M.F., Pan, Q.K., Suganthan, P., Chen, A.H.L.: A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops. Inf. Sci. 181(16), 3459–3475 (2011).  https://doi.org/10.1016/j.ins.2011.04.018MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rajendran, C., Ziegler, H.: An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. Eur. J. Oper. Res. 103(1), 129–138 (1997).  https://doi.org/10.1016/S0377-2217(96)00273-1CrossRefGoogle Scholar
  28. 28.
    Deroussi, L., Gourgand, M., Norre, S.: New effective neighborhoods for the permutation flow shop problem. Technical report LIMOS/RR-06-09, LIMOS/ISIMA (2006)Google Scholar
  29. 29.
    Dubois-Lacoste, J.: Anytime local search for multi-objective combinatorial optimization: design, analysis and automatic configuration. Ph.D. thesis, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2014)Google Scholar
  30. 30.
    Kalczynski, P.J., Kamburowski, J.: An improved NEH heuristic to minimize makespan in permutation flow shops. Comput. Oper. Res. 35(9), 3001–3008 (2008).  https://doi.org/10.1016/j.cor.2007.01.020MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kalczynski, P.J., Kamburowski, J.: An empirical analysis of the optimality rate of flow shop heuristics. Eur. J. Oper. Res. 198(1), 93–101 (2009).  https://doi.org/10.1016/j.ejor.2008.08.021CrossRefGoogle Scholar
  32. 32.
    Vasiljevic, D., Danilovic, M.: Handling ties in heuristics for the permutation flow shop scheduling problem. J. Manuf. Syst. 35(Supplement C), 1–9 (2015).  https://doi.org/10.1016/j.jmsy.2014.11.011CrossRefGoogle Scholar
  33. 33.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., et al. (eds.) HM 2007, vol. 4771, pp. 108–122. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75514-2_9
  34. 34.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993).  https://doi.org/10.1016/0377-2217(93)90182-MCrossRefGoogle Scholar
  35. 35.
    Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop scheduling problems minimising makespan. Eur. J. Oper. Res. 240(3), 666–677 (2015).  https://doi.org/10.1016/j.ejor.2014.07.033CrossRefGoogle Scholar
  36. 36.
    Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem with flowtime minimization. Eur. J. Oper. Res. 222(1), 31–43 (2012).  https://doi.org/10.1016/j.ejor.2012.04.034MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations