Hydrodynamic and Geochemical Features of Metamorphic Carbonate Aquifers and Implications for Water Management: The Apuan Alps (NW Tuscany, Italy) Case Study

  • Marco Doveri
  • Leonardo Piccini
  • Matia Menichini
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 68)


Carbonate rocks may be considered among the most important and strategic aquifers, given their widespread and the general high quality of groundwater flowing through them. Nevertheless, the karst systems developed within such aquifers promote conditions of high vulnerability to contamination and a high variability of groundwater flow rate, thus making the management of these water resources difficult. These critical features can be accentuated in metamorphosed carbonates, because of the massive structure of the rock that favours a low density of the karst network, and a preferential flow pattern throughout well-developed karst conduits. Furthermore, these rocks are often subject to quarrying and associated risk of pollution, mainly due to the fine slurry produced during marble cutting. This chapter presents the case of the Apuan Alps (NW Tuscany, Italy), where the main hydrogeological units are represented by metamorphosed dolostones and limestones (“Grezzoni” and marble, respectively), the latter being widely quarried to produce ornamental stones, as the famous Carrara marble. High-pressure ductile deformations and the consequent metamorphism have reduced the hydraulic conductivity of bedding surface, whereas the tectonic exhumation due to low-angle extensional faults has limited the development of diffuse fracture joints. For these reasons, an important subterranean storage of water is represented by epikarst porosity (unloading fissures and solution pockets) and vadose seepage, whereas in the epiphreatic and phreatic zones, the karst conduits have a high hydraulic conductivity but a low storage capability. Large flow rates and physical-chemical and isotopic variations, both in space and time, are observed at the springs as a consequence of differentiation of groundwater flow paths and hydrodynamic conditions. The main results derived from several years of study in the region are discussed in order to underline the high complexity of aquifer systems hosted in metamorphic carbonate rocks and to emphasize that multidisciplinary studies can provide knowledge useful for managing water resources in these very complex contexts.


Groundwater vulnerability Karst springs Metamorphosed carbonate aquifer Preferential groundwater flow paths Water isotopes 



The authors are grateful to the editors of this volume for their careful revision that greatly improves the clarity of this chapter. Research activities have been granted along over 10 years by the Institute of Geosciences and Earth Resources (CNR) and the University of Florence. Researches have been supported in part by the Project of National Interest NextData of the MIUR (Italian Ministry for Education, University and Research) and in part carried out through two PhD projects, respectively, funded by the University of Pisa and the AMIA S.p.A. (Municipal Agency for Water and Hygiene) of Carrara.


  1. 1.
    Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London, p 601CrossRefGoogle Scholar
  2. 2.
    Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early Warning and Assessment Report Series, RS. 03-3. United Nations Environment Programme, NairobiGoogle Scholar
  3. 3.
    Stevanović Z (2015) Karst environment and phenomena. In: Stevanović Z (ed) “Karst aquifers – characterization and engineering” – professional practice in earth sciences. Springer, Switzerland, pp 19–46. ISSN: 2364-0073Google Scholar
  4. 4.
    Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 553CrossRefGoogle Scholar
  5. 5.
    Forti P (2002) Gli acquiferi carsici: problematiche per il loro studio ed utilizzo. In: Atti del convegno “Le risorse idriche sotterranee delle Alpi Apuane: conoscenze attuali e prospettive di utilizzo”, Federazione Speleologica Toscana, Centro Visite del Parco Apuane, Filanda di Forno, Massa-Italia, 22 giugno 2002, pp 7–23Google Scholar
  6. 6.
    USGS (2016) Accessed 13 Dec 2016
  7. 7.
    Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564CrossRefGoogle Scholar
  8. 8.
    Andreo B, Vías J, Durán JJ, Jiménez P, López-Get JA, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol J 16(5):911–925CrossRefGoogle Scholar
  9. 9.
    Hartmann A, Mudarra M, Andreo B, Marin A, Wagener T, Lange J (2014) Modeling spatio-temporal impacts of hydro-climatic extremes on a karst aquifer in Southern Spain. Water Resour Res 50:6507–6521CrossRefGoogle Scholar
  10. 10.
    Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242. Scholar
  11. 11.
    Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347–350CrossRefGoogle Scholar
  12. 12.
    Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3(9):816–821CrossRefGoogle Scholar
  13. 13.
    Chan D, Wu QG (2015) Significant anthropogenic-induced changes of climate classes since 1950. Sci Rep 5:13487CrossRefGoogle Scholar
  14. 14.
    Turco M, Palazzi E, von Hardenberg J, Provenzale A (2015) Observed climate change hotspots. Geophys Res Lett 42:3521–3528. Scholar
  15. 15.
    Doveri M, Menichini M, Scozzari A (2016) Protection of groundwater resources: worldwide regulations, scientific approaches and case study. In: Scozzari A, Dotsika E (eds) “Threats to the quality of groundwater resources: prevention and control” – the handbook of environmental chemistry, vol 40. Springer, Berlin, pp 13–30. ISSN: 1867-979XCrossRefGoogle Scholar
  16. 16.
    Carmignani L, Kligfield R (1990) Crustal extension in the Northern Apennines: the transition from compression to extension in the Alpi Apuane core complex. Tectonics 9(6):1275–1303CrossRefGoogle Scholar
  17. 17.
    Molli G, Meccheri M (2012) Structural inheritance and style of reactivation at mid-crustal levels: a case study from the Alpi Apuane (Tuscany, Italy). Tectonophysics 579:74–87CrossRefGoogle Scholar
  18. 18.
    Stewart MK, Thomas JT (2008) A conceptual model of flow to the Waikoropupu Springs, NW Nelson, New Zealand, based on hydrometric and tracer (18O, Cl, 3H and CFC) evidence. Hydrol Earth Syst Sci 12:1–19CrossRefGoogle Scholar
  19. 19.
    Lauritzen SE (2001) Marble stripe karst of the Scandinavian caledonides: an end-member in the contact karst spectrum. Acta Carsologica 30(2):47–79Google Scholar
  20. 20.
    Despain JD, Stock GM (2005) Geomorphic history of Crystal Cave, Southern Sierra Nevada, California. J Cave Karst Stud 67(2):92–102Google Scholar
  21. 21.
    Skoglund RØ, Lauritzen SE (2011) Subglacial maze origin in low-dip marble stripe karst: examples from Norway. J Cave Karst Stud 73(1):31–43CrossRefGoogle Scholar
  22. 22.
    Tobin BW, Schwartz BF (2012) Quantifying concentrated and diffuse recharge in two marble karst aquifers: big Spring and Tufa Spring, Sequoia and Kings Canyon National Parks, California, USA. J Cave Karst Stud 74(2):186–196CrossRefGoogle Scholar
  23. 23.
    Filho WS, Cordeiro BM, Karmann I (2014) Structural and hydrological controls on the development of a river cave in marble (Tapagem Cave – Southeastern Brazil). Int J Speleol 44(1):75–90CrossRefGoogle Scholar
  24. 24.
    Sismek C, Kaya B, Alkan A, Buyuktopcu F, Turk N, Arisoy Y (2015) Hydrogeology and hydrochemistry of marble aquifer with point recharge from two deep sinkholes, Menderes massive, Western Turkey. Acta Carsologica 44(2):205–214Google Scholar
  25. 25.
    Menichini M, Doveri M, Piccini L (2016) Hydrogeological and geochemical overview of the karst aquifers in the Apuan Alps (Northwestern Tuscany, Italy). Ital J Groundw AS16-198:15–23Google Scholar
  26. 26.
    Molli G, Doveri M, Manzella A, Bonini L, Botti F, Menichini M, Montanari D, Trumpy E, Ungari A, Vaselli L (2015) Surface – subsurface structural architecture and groundwater flow of the Equi Terme hydrothermal area, northern Tuscany Italy. Ital J Geosci 134:442–457CrossRefGoogle Scholar
  27. 27.
    Civita M, Forti P, Marini P, Meccheri M, Micheli L, Piccini L, Pranzini G (1991) Carta della vulnerabilità all’inquinamento degli acquiferi delle Alpi Apuane “Pollution Vulnerability map for the aquifers of the Apuane Alps” – scala “scale” 1:25.000. Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, C. N. R., SE.L.CA, FirenzeGoogle Scholar
  28. 28.
    Baldacci F, Cecchini S, Lopane G, Raggi G (1993) Le risorse idriche del bacino del Fiume Serchio ed il loro contributo all’alimentazione dei bacini idrografici adiacenti “Water resources of Serchio River basin and their contribution to the feeding of surrounding hydrographic basins”. Mem Soc Geol Ital 49:365–391Google Scholar
  29. 29.
    Piccini L, Pranzini G, Tedici L, Forti P (1999) Le risorse idriche dei complessi carbonatici del comprensorio apuo-versiliese “Water resources of carbonate complexes in apuan-versilian region”. Quaderni Geologia Applicata 6(1):61–78Google Scholar
  30. 30.
    Settore Idrologico Regionale (2017) Accessed 20 Jan 2017
  31. 31.
    Doveri M, Menichini M, Provenzale A, Scozzari A (2017) Effects of climate change on groundwater: observed and forecasted trends on Italian systems. Geophys Res Abstr 19:EGU2017Google Scholar
  32. 32.
    Piccini L (2002) Acquiferi carbonatici e sorgenti carsiche delle Alpi Apuane “Carbonate aquifers and karst springs of Apuan Alps”. Atti Conv. “Le risorse idriche sotterranee delle Alpi Apuane: conoscenze attuali e prospettive di utilizzo”, Forno di Massa, Giugno 2002, pp 41–76Google Scholar
  33. 33.
    Masini R (1956) Studi geoidrologici sulle acque fredde e calde (Alpi Apuane, Bacino del Serchio) “Hydrogeological studies on cold and warm waters (Apuan Alps, Serchio Basin)”. Boll Serv Geol Ital 78:709–788Google Scholar
  34. 34.
    Masini R (1960) I bacini costieri delle Alpi Apuane (studi geoidrologici sulle acque sotterranee) “The coastal basins of Apuan Alps (hydrogeological studies on groundwaters)”. Boll Serv Geol Ital 55:657–752Google Scholar
  35. 35.
    Drysdale RN, Pierotti L, Piccini L, Baldacci F (2001) Suspended sediments in karst spring waters near Massa (Tuscany), Italy. Environ Geol 40:1037–1050CrossRefGoogle Scholar
  36. 36.
    Conti P, Di Pisa A, Gattiglio M, Meccheri M (1993) Pre-Alpine basement in the Alpi Apuane (Northern Apennines, Italy). In: Von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin, pp 609–621CrossRefGoogle Scholar
  37. 37.
    Kligfield R, Hunziker J, Dallmeyer RD, Schamel S (1986) Dating of deformational phases using K-Ar and 40Ar/39Ar techniques: results from the Northern Apennines. J Struct Geol 8:781–798CrossRefGoogle Scholar
  38. 38.
    Carmignani L, Giglia G (1983) II problema della doppia vergenza sulle Alpi Apuane e la struttura del Monte Corchia. Mem Soc Geol It 26:515–525Google Scholar
  39. 39.
    Molli G, Cortecci G, Vaselli L, Ottria G, Cortopassi A, Dinelli E, Mussi M, Barbieri M (2010) Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). J Struct Geol 32:1334–1348CrossRefGoogle Scholar
  40. 40.
    Ottria G, Molli G (2000) Superimposed brittle structures in the late-orogenic extension of the Northern Apennine: results from the Carrara area (Alpi Apuane, NW Tuscany). Terra Nova 12:52–59CrossRefGoogle Scholar
  41. 41.
    Vaselli L, Cortecci G, Tonarini S, Ottria G, Mussi M (2012) Conditions for veining and origin of mineralizing fluids in the Alpi Apuane (NW Tuscany, Italy): evidence from structural and geochemical analyses on calcite veins hosted in Carrara marbles. J Struct Geol 44:76–92CrossRefGoogle Scholar
  42. 42.
    Piccini L (1994) Caratteri morfologici ed evoluzione dei fenomeni carsici profondi nelle Alpi Apuane (Toscana, Italia). Natura Bresciana 30:48–85Google Scholar
  43. 43.
    Piccini L (1998) Evolution of karst in the Alpi Apuane (Italy): relationships with the morphotectonic history. In: Fourth international conference on geomorphology, Bologna, August 28–September 3, 1997. Supplementi Geografia Fisica e Dinamica Quaternaria III, 4, pp 21–31Google Scholar
  44. 44.
    Piccini L (2011) Speleogenesis in highly geodynamic contexts: the quaternary evolution of Monte Corchia multi-level karst system (Alpi Apuane, Italy). Geomorphology 134:49–61CrossRefGoogle Scholar
  45. 45.
    Federazione Speleologica Toscana (2016) Accessed 20 Dec 2016
  46. 46.
    Piccini L, Drysdale R, Heijnis H (2003) Karst morphology and cave sediments as indicators of the uplift history in the Alpi Apuane (Tuscany, Italy). Quat Int 101–102:219–227CrossRefGoogle Scholar
  47. 47.
    Piccini L, Pranzini G (1989) Idrogeologia e carsismo del bacino del Fiume Frigido (Alpi Apuane). Atti Soc Tosc Sci Nat Mem Serie A 96:107–158Google Scholar
  48. 48.
    Doveri M (2004) Studio idrogeologico e idrogeochimico dei sistemi acquiferi del bacino del Torrente Carrione e dell’antistante piana costiera. Tesi di Dottorato inedita, Università di Pisa, 178 ppGoogle Scholar
  49. 49.
    Doveri M, Menichini M, Cerrina Feroni A (2013) Stable water isotope as fundamental tool in karst aquifer studies: some results from isotopic applications in the Apuan Alps carbonatic complexes (NW Tuscany). Ital J Eng Geol Environ 1:25–42Google Scholar
  50. 50.
    Roncioni A (2002) La Federazione Speleologica Toscana e le ricerche idrogeologiche nelle cavità carsiche delle Alpi Apuane. Atti Conv. “Le risorse idriche sotterranee delle Alpi Apuane: conoscenze attuali e prospettive di utilizzo” Forno di Massa, Giugno 2002, pp 77–104Google Scholar
  51. 51.
    Badino G (2010) Underground meteorology – “What’s the weather underground?”. Acta Carsologica 39(3):427–448CrossRefGoogle Scholar
  52. 52.
    Orsini A (1987) Indagine idrogeologica e geochimica ai fini della ricostruzione dei bacini di alimentazione di alcuni sorgenti nella zona delle Apuane. Tesi di laurea in Scienze Geologiche, Facoltà di Scienze M.F.N., Università degli Studi di Firenze, 124 ppGoogle Scholar
  53. 53.
    Doveri M (2000) Studio idrogeochimico di sistemi acquiferi superficiali e profondi delle Alpi Apuane e della Valle del Serchio. Tesi di Laurea, Università di Pisa, a.a. 1999–2000, 245 ppGoogle Scholar
  54. 54.
    Doveri M, Leone G, Mussi M, Zanchetta G (2005) Composizione isotopica di acque ipogee nell’Antro del Corchia (Alpi Apuane, Toscana nord-occidentale). Mem Ist It di Speleologia 18:119–132Google Scholar
  55. 55.
    Mantelli F, Piccini L (2007) Caratteristiche chimiche delle acque delle sorgenti carsiche delle Alpi Apuane. In: Comitato Alpi Apuane 2007, “Apuane e dintorni – Guida incompleta al fenomeno carsico”, Tip. Amaducci, Borgo a Mozzano, Lucca, pp 69–75Google Scholar
  56. 56.
    Menichini M (2012) A multidisciplinary approach to define the hydrogeological model of aquifer systems in the “Fiume Versilia” catchment and the adjacent coastal plain (Northwest Tuscany, Italy). Tesi di Dottorato inedita, Università di Pisa, Scuola di Dottorato Galileo Galilei. Programma in Scienze della TerraGoogle Scholar
  57. 57.
    Mantelli F, Lotti L, Montigiani A, Piccini L (2015) Chimica delle acque del Complesso carsico del Monte Corchia. Acta Apuana XI(2012):33–45Google Scholar
  58. 58.
    Piper AM (1944) A graphical procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923CrossRefGoogle Scholar
  59. 59.
    Cortecci G, Lattanzi P, Tanelli G (1985) Barite-iron oxide-pyrite deposits from Apuane Alps (Northern Tuscany, Italy). Geol Carpatica 36:347–357Google Scholar
  60. 60.
    Mancini S (2004) La buca dell’Angina grotta e miniera apuana.
  61. 61.
    Mussi M, Leone G, Nardi I (1998) Isotopic geochemistry of natural water from the Alpi Apuane- Garfagnana area, Northern Tuscany, Italy. Miner Petrogr Acta 41:163–178Google Scholar
  62. 62.
    Doveri M, Mussi M (2014) Water isotopes as environmental tracers for conceptual understanding of groundwater flow: an application for fractured aquifer systems in the “Scansano-Magliano in Toscana” area (Southern Tuscany, Italy). Water 6(8):2255–2277CrossRefGoogle Scholar
  63. 63.
    Gat JR, Carmi I (1970) Evolution of isotopic composition of atmospheric waters in the Mediterranean sea area. J Geophys Res 75:3032–3048CrossRefGoogle Scholar
  64. 64.
    Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702CrossRefGoogle Scholar
  65. 65.
    Camera di Commercio (2012) Accessed 18 Jan 2017
  66. 66.
    Forti P, Piccini L, Pranzini G (1994) Le risorse idriche di emergenza delle Alpi Apuane (Toscana – Italia). Atti 2° Conv. Int. di Geoidrologia, Firenze, 29 novembre–3 Dicembre 1993, Quaderni di Tecniche di Protezione Ambientale, vol 49. Pitagora Ed., Bologna, pp 303–318Google Scholar
  67. 67.
    Piccini L, Giannini E, Malcapi V, Poggetti E, Steinberg B (2015) Monitoraggio idrodinamico di un sistema carsico: risultati preliminari di un anno d’indagini alla sorgente Pollaccia (Alpi Apuane – Toscana). Atti Convegno “La ricerca carsologica in Italia”, Fabrosa Soprana (CN), 22–23 giugno 2013, pp 147–154Google Scholar
  68. 68.
    Poggetti E, Lazzaroni M, Verole M, Piccini L (2015) Risultati e interpretazione idrodinamica del monitoraggio in continuo delle sorgenti carsiche di Equi Terme (Alpi Apuane). 8° Congresso Nazionale di Speleologia, Pertosa, Auletta (SA), 30 maggio–2 giugno 2015, pp 369–374Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Marco Doveri
    • 1
  • Leonardo Piccini
    • 2
  • Matia Menichini
    • 1
  1. 1.Institute of Geosciences and Earth Resources, National Research Council of ItalyPisaItaly
  2. 2.Department of Earth ScienceUniversity of FlorenceFlorenceItaly

Personalised recommendations