Skip to main content

Biogas Purification and Upgrading Technologies

  • Chapter
  • First Online:
Book cover Biogas

Abstract

The fact that most countries do not promote the use of biogas as energy vector via tax incentives entails the need for an optimization of biogas upgrading technologies in order to support a cost-competitive utilization of this renewable energy source. Nowadays, the contaminants present in biogas such as CO2, H2S, H2O, N2, O2, siloxanes, and halocarbons are removed through the implementation of costly and environmentally unfriendly upgrading processes. Conventional biogas upgrading is based on physical/chemical technologies leading to CH4 purities of 88–98% and removal efficiencies of higher than 99% for H2S, halocarbons, and siloxanes. Unfortunately, their high energy and chemical demands limit the environmental and economic sustainability of these conventional biogas upgrading technologies. In this sense, biological processes have emerged in the past decade as an economic and environmentally friendly alternative to conventional biogas upgrading technologies. Thus, biotechnologies such as microalgae-based CO2 fixation, H2-assisted litoautotrophic CO2 bioconversion to CH4, enzymatic CO2 dissolution or fermentative CO2 reduction have been consistently shown to result in CO2 removals of 80–100% with CH4 purities of 88–100%, while allowing the valorization of CO2 into bioproducts of commercial interest (therefore preventing its release to the atmosphere). Similarly, H2S removals > 99% are consistently achieved in aerobic and anoxic biotrickling filters, algal-bacterial photobioreactors, and digesters under microaerobic conditions. In addition, recent investigations have shown the potential biodegradability of siloxanes and halocarbons under both aerobic and anaerobic conditions. This chapter constitutes a state of the art comparison of physical/chemical and biological technologies for the removal of CO2, H2S, halocarbons, and siloxanes from biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

This work was supported by MINECO via the FEDER program (CTM2015-70442-R and Red Novedar), the European Commission (INCOVER project, this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 689242), the Regional Government of Castilla y León (Project VA024U14 and UIC 71) and INIA (RTA2013-00056-C03-02). CONACyT-SENER is also gratefully acknowledged for the PhD grant of Roxana Ángeles Torres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodero, M.R. et al. (2018). Biogas Purification and Upgrading Technologies. In: Tabatabaei, M., Ghanavati, H. (eds) Biogas. Biofuel and Biorefinery Technologies, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77335-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77335-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77334-6

  • Online ISBN: 978-3-319-77335-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics