Descriptional and Computational Complexity of the Circuit Representation of Finite Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

In this paper we continue to investigate the complexity of the circuit representation of DFA—BC-complexity. We compare it with nondeterministic state complexity, obtain upper and lower bounds which differ only by a factor of 4 for a Binary input alphabet. Also we prove that many simple operations (determining if a state is reachable or if an automaton is minimal) are PSPACE-complete for DFA given in circuit representation.

References

  1. 1.
    Kohavi, Z., Jha, N.K.: Switching and Finite Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Calazans, N.L.: State minimization and state assignment of finite state machines: their relationship and their impact on the implementation. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1993)Google Scholar
  3. 3.
    Benini, L., De Micheli, G.: State assignment for low power dissipation. IEEE J. Solid-State Circuits 30(3), 258–268 (1995)CrossRefGoogle Scholar
  4. 4.
    Kajstura, K., Kania, D.: Low power synthesis of finite state machines–state assignment decomposition algorithm. J. Circuits Syst. Comput. 27, 1850041 (2017)CrossRefGoogle Scholar
  5. 5.
    Valdats, M.: Transition function complexity of finite automata. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 301–313. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22600-7_24 CrossRefGoogle Scholar
  6. 6.
    Valdats, M.: Boolean circuit complexity of regular languages. In: International Conference on Automata and Formal Languages. EPTCS, vol. 151, pp. 342–354 (2014)Google Scholar
  7. 7.
    Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages accepted by finite automata with n states. J. Automata Lang. Comb. 7(4), 469–486 (2002)MathSciNetMATHGoogle Scholar
  8. 8.
    Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1987)MATHGoogle Scholar
  9. 9.
    Lupanov, O.: Asymptotic estimates of the complexity of control systems. Moscow State University (1984). (in Russian)Google Scholar
  10. 10.
    Tarjan, R.E.: Complexity of monotone networks for computing conjunctions. Ann. Discret. Math. 2, 121–133 (1978)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lozano, A., Balcázar, J.L.: The complexity of graph problems for succinctly represented graphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 277–286. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-52292-1_20 CrossRefGoogle Scholar
  12. 12.
    Balcázar, J.L., Lozano, A., Torán, J.: The complexity of algorithmic problems on succinct instances. In: Baeza-Yates, R., Manber, U. (eds.) Computer Science, pp. 351–377. Springer, Boston (1992).  https://doi.org/10.1007/978-1-4615-3422-8_30 CrossRefGoogle Scholar
  13. 13.
    Borchert, B., Lozano, A.: Succinct circuit representations and leaf languages are basically the same concept. Technical report, Universitat Politechnica de Catalunya (1996). http://upcommons.upc.edu/handle/2117/97245
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations