Advertisement

Mediation Modeling: Differing Perspectives on Time Alter Mediation Inferences

  • Pascal R. Deboeck
  • Kristopher J. Preacher
  • David A. Cole
Chapter

Abstract

Time is unlike any other variable collected in the social, behavioral, and medical sciences. Research participants who are sampled, and variables that are measured, come in distinct, discrete units. Although time is often recorded in such discrete units (e.g., wave 1, grade 3, day 5), time is markedly different from either participants or variables. Sampling time points is unlike sampling people or variables, as there are an arbitrary number of additional samples that can be collected between any two occasions of measurement. These interstitial samples are ignored by many longitudinal modeling paradigms. These observations that occur between sampling occasions form the basis for the perspectives on mediation explored in this chapter. We focus on the difference in perspectives offered by discrete time approaches commonly utilized in mediation research versus models that conceptualize time as a continuous variable. The differences in how one conceptualizes time have the potential to alter such core mediation concepts as direct and indirect effect, complete and partial mediation, and even what constitutes a “mediation” model.

References

  1. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173 CrossRefGoogle Scholar
  2. Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71, 791–799. https://doi.org/10.1080/01621459.1976.10480949 MathSciNetCrossRefGoogle Scholar
  3. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/ correlation analysis for the behavioral sciences. New York: Routledge.Google Scholar
  4. Cole, D. A., Martin, J. M., Peeke, L. A., Seroczynski, A. D., & Fier, J. (1999a). Children’s over- and underestimation of academic competence: A longitudinal study of gender differences, depression, and anxiety. Child Development, 70(2), 459–473. https://doi.org/10.1111/1467-8624.00033 CrossRefGoogle Scholar
  5. Cole, D. A., Martin, J. M., & Powers, B. (1997). A competency-based model of child depression: A longitudinal study of peer, parent, teacher, and selfevaluations. Journal of Child Psychology and Psychiatry, 38(5), 505–514. https://doi.org/10.1111/j.1469-7610.1997.tb01537.x CrossRefGoogle Scholar
  6. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577. https://doi.org/10.1037/0021-843X.112.4.558 CrossRefGoogle Scholar
  7. Cole, D. A., Peeke, L., Dolezal, S., Murray, N., & Canzoniero, A. (1999b). A longitudinal study of negative affect and self-perceived competence in young adolescents. Journal of Personality and Social Psychology, 77(4), 851. https://doi.org/10.1037/0022-3514.77.4.851 CrossRefGoogle Scholar
  8. Cole, D. A., Peeke, L. G., Martin, J. M., Truglio, R., & Seroczynski, A. D. (1998). A longitudinal look at the relation between depression and anxiety in children and adolescents. Journal of Consulting and Clinical Psychology, 66(3), 451–460. https://doi.org/10.1037/0022-006X.66.3.451 CrossRefGoogle Scholar
  9. Deboeck, P. R., & Boulton, A. J. (2016). Integration of stochastic differential equations using structural equation modeling: A method to facilitate model fitting and pedagogy. Structural Equation Modeling, 23, 888–903. https://doi.org/10.1080/10705511.2016.1218763 MathSciNetCrossRefGoogle Scholar
  10. Deboeck, P. R., Nicholson, J. S., Kouros, C., Little, T. D., & Garber, J. (2015). Integrating developmental theory and methodology: Using derivatives to articulate change theories, models, and inferences. Applied Developmental Science, 19(4), 217–231. https://doi.org/10.1080/10888691.2015.1021924 CrossRefGoogle Scholar
  11. Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling, 23, 61–75. https://doi.org/10.1080/10705511.2014.973960 MathSciNetCrossRefGoogle Scholar
  12. Dobson, K. S. (1985). The relationship between anxiety and depression. Clinical Psychology Review, 5, 307–324. https://doi.org/10.1016/0272-7358(85)90010-8 CrossRefGoogle Scholar
  13. Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58, 80–92. https://doi.org/10.2307/1130293 CrossRefGoogle Scholar
  14. Gollob, H. F., & Reichardt, C. S. (1991). Interpreting and estimating indirect effects assuming time lags really matter. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 243–259). Washington, DC: American Psychological Association. https://doi.org/10.1037/10099-015 CrossRefGoogle Scholar
  15. Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889 CrossRefGoogle Scholar
  16. Harter, S. (1985). Manual for the self-perception profile for children (revision of the perceived competence scale for children). University of Denver.Google Scholar
  17. Kendall, P. C., & Brady, E. U. (1995). Comorbidity in the anxiety disorders of childhood: Implications for validity and clinical significance. In K. D. Craig & K. S. Dobson (Eds.), Banff international behavioral science series. Anxiety and depression in adults and children (pp. 3–36). Thousand Oaks, CA: Sage Publications.Google Scholar
  18. Kovacs, M. (1981). Rating scales to assess depression in school-aged children. Acta Paedopsychiatrica: International Journal of Child & Adolescent Psychiatry, 46, 305–315.Google Scholar
  19. Kovacs, M. (1982). The Children’s Depression Inventory: A self-rating depression scale for school-aged youngsters. Unpublished manuscript, University of Pittsburgh.Google Scholar
  20. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum.Google Scholar
  21. Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12, 23–44. https://doi.org/10.1037/1082-989X.12.1.23 CrossRefGoogle Scholar
  22. McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605.  https://doi.org/10.1146/annurev.psych.60.110707.163612 CrossRefGoogle Scholar
  23. Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., et al. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 80(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8 MathSciNetCrossRefGoogle Scholar
  24. Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199–215. https://doi.org/10.1007/BF02294374 MathSciNetCrossRefGoogle Scholar
  25. Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66, 825–852.  https://doi.org/10.1146/annurev-psych-010814-015258 CrossRefGoogle Scholar
  26. Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16, 93–115. https://doi.org/10.1037/a0022658 CrossRefGoogle Scholar
  27. R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ Google Scholar
  28. Reynolds, C. R., & Richmond, B. O. (1985). Revised children’s manifest anxiety scale. Los Angeles: Western Psychological Services.Google Scholar
  29. Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6, 144–164.CrossRefGoogle Scholar
  30. Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192. https://doi.org/10.1037/a0027543 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pascal R. Deboeck
    • 1
  • Kristopher J. Preacher
    • 2
  • David A. Cole
    • 2
  1. 1.Department of PsychologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleUSA

Personalised recommendations