Advertisement

Understanding the Time Course of Interventions with Continuous Time Dynamic Models

  • Charles C. Driver
  • Manuel C. Voelkle
Chapter

Abstract

How long does a treatment take to reach maximum effect? Is the effect maintained or does it dissipate or perhaps even reverse? Do certain sorts of people respond faster or stronger than others? Is the treatment more effective in the long run for those that respond quickly? We describe a continuous time dynamic modelling approach for addressing such questions, with discussion and example code for simple impulse effects, persistent changes in level, treatments where the effect may reverse in direction over time, treatments that change a trend, assessing mediation in treatment effects and examining individual differences in treatment effects, duration and shape and correlates of such individual differences.

References

  1. Boker, S. M., Staples, A. D., & Hu, Y. (2016). Dynamics of change and change in dynamics. Journal of Person-Oriented Research, 2, 34–55.  https://doi.org/10.17505/jpor.2016.05 CrossRefGoogle Scholar
  2. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., …Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1).  https://doi.org/10.18637/jss.v076.i01
  3. Danhof, M., de Lange, E. C. M., Della Pasqua, O. E., Ploeger, B. A., & Voskuyl, R. A. (2008). Mechanism-based pharmacokinetic-pharmacodynamic (PKPD) modeling in translational drug research. Trends in Pharmacological Sciences, 29(4), 186–191. https://doi.org/10.1016/j.tips.2008.01.007 CrossRefGoogle Scholar
  4. Donnet, S., & Samson, A. (2013). A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Advanced Drug Delivery Reviews, 65(7), 929–939. https://doi.org/10.1016/j.addr.2013.03.005 CrossRefGoogle Scholar
  5. Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modeling with r package ctsem. Journal of Statistical Software, 77(5).  https://doi.org/10.18637/jss.v077.i05
  6. Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods.Google Scholar
  7. Gardiner, C. W. (1985). Handbook of stochastic methods (Vol. 3). Berlin: Springer. Retrieved 2016, from http://tocs.ulb.tu-darmstadt.de/12326852.pdf Google Scholar
  8. Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R.M., …Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8 MathSciNetCrossRefGoogle Scholar
  9. Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215. https://doi.org/10.1007/BF02294374 MathSciNetCrossRefGoogle Scholar
  10. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
  11. Singer, H. (1993). Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. Journal of Time Series Analysis, 14(5), 527–545. https://doi.org/10.1111/j.1467-9892.1993.tb00162.x MathSciNetCrossRefGoogle Scholar
  12. Singer, H. (1998). Continuous panel models with time dependent parameters. Journal of Mathematical Sociology, 23(2), 77–98. https://doi.org/10.1080/0022250X.1998.9990214 CrossRefGoogle Scholar
  13. Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66(1), 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x MathSciNetCrossRefGoogle Scholar
  14. Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176–192. https://doi.org/10.1037/a0027543 CrossRefGoogle Scholar
  15. Wang, Q., Molenaar, P., Harsh, S., Freeman, K., Xie, J., Gold, C., …Ulbrecht, J. (2014). Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: An extended Kalman filter approach. Journal of Diabetes Science and Technology, 8(2), 331–345. https://doi.org/10.1177/1932296814524080 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
  2. 2.Department of PsychologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations