Advertisement

Radiology of Craniofacial Trauma

  • Wouter J. P. Henneman
  • Alida A. Postma
  • Thomas Treumann
Chapter

Abstract

Non-contrast-enhanced computed tomography (CT) is the primary imaging method in craniofacial trauma. Other imaging modalities (contrast enhanced CT, magnetic resonance imaging, conventional x-rays) might be used to complement primary imaging or address specific complications after trauma. This chapter summarizes technical background, recent developments and applications of the different radiologic modalities. The second part focuses on radiological assessment of trauma and suggests a practical approach to structured reading of CT in craniofacial trauma.

References

  1. Baugnon KL, Hudgins PA. Skull base fractures and their complications. Neuroimaging Clin N Am. 2014;24(3):439–65, vii–viii.CrossRefGoogle Scholar
  2. Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K, et al. Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One. 2015;10(11):e0143584.CrossRefGoogle Scholar
  3. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19(3):745–64.CrossRefGoogle Scholar
  4. Casselman JW, Gieraerts K, Volders D, Delanote J, Mermuys K, De Foer B, et al. Cone beam CT: non-dental applications. JBR-BTR. 2013;96(6):333–53.PubMedGoogle Scholar
  5. Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H. Cinematic rendering—an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7(6):849–56.CrossRefGoogle Scholar
  6. Grosse Hokamp N, Neuhaus V, Abdullayev N, Laukamp K, Lennartz S, Mpotsaris A, et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms. Skelet Radiol. 2018;47(2):195–201.CrossRefGoogle Scholar
  7. Huang JY, Kerns JR, Nute JL, Liu X, Balter PA, Stingo FC, et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol. 2015;60(3):1047–67.CrossRefGoogle Scholar
  8. Ibrahim M, Parmar H, Christodoulou E, Mukherji S. Raise the bar and lower the dose: current and future strategies for radiation dose reduction in head and neck imaging. AJNR Am J Neuroradiol. 2014;35(4):619–24.CrossRefGoogle Scholar
  9. Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol. 2012;199(5 Suppl):S3–8.CrossRefGoogle Scholar
  10. Kellock TT, Nicolaou S, Kim SSY, Al-Busaidi S, Louis LJ, O’Connell TW, et al. Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology. 2017;284(3):798–805.CrossRefGoogle Scholar
  11. Khandelwal N, Agarwal A, Kochhar R, Bapuraj JR, Singh P, Prabhakar S, et al. Comparison of CT venography with MR venography in cerebral sinovenous thrombosis. AJR Am J Roentgenol. 2006;187(6):1637–43.CrossRefGoogle Scholar
  12. Kim JS, Kwon SM, Kim JM, Yoon SW. New organ-based tube current modulation method to reduce the radiation dose during computed tomography of the head: evaluation of image quality and radiation dose to the eyes in the phantom study. Radiol Med. 2017;122(8):601–8.CrossRefGoogle Scholar
  13. Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28(5):1451–9.CrossRefGoogle Scholar
  14. May MS, Kramer MR, Eller A, Wuest W, Scharf M, Brand M, et al. Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose. Neuroradiology. 2014;56(9):797–803.CrossRefGoogle Scholar
  15. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009a;30(7):1285–92.CrossRefGoogle Scholar
  16. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol. 2009b;30(6):1088–95.CrossRefGoogle Scholar
  17. Pagniez J, Legrand L, Khung S, Faivre JB, Duhamel A, Krauss A, et al. Metal artifact reduction on chest computed tomography examinations: comparison of the iterative metallic artefact reduction algorithm and the monoenergetic approach. J Comput Assist Tomogr. 2017;41(3):446–54.CrossRefGoogle Scholar
  18. Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, et al. Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology. 2017;284(1):161–8.CrossRefGoogle Scholar
  19. Poort LJ, Stadler AAR, Ludlage JHB, Hoebers FJP, Kessler P, Postma AA. Detection of bone marrow edema pattern with dual-energy computed tomography of the pig mandible treated with radiotherapy and surgery compared with magnetic resonance imaging. J Comput Assist Tomogr. 2017;41(4):553–8.CrossRefGoogle Scholar
  20. Provenzale JM, Sarikaya B. Comparison of test performance characteristics of MRI, MR angiography, and CT angiography in the diagnosis of carotid and vertebral artery dissection: a review of the medical literature. AJR Am J Roentgenol. 2009;193(4):1167–74.CrossRefGoogle Scholar
  21. Rapalino O, Kamalian S, Kamalian S, Payabvash S, Souza LC, Zhang D, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33(4):609–15.CrossRefGoogle Scholar
  22. Roele ED, Timmer V, Vaassen LAA, van Kroonenburgh A, Postma AA. Dual-energy CT in head and neck imaging. Curr Radiol Rep. 2017;5(5):19.CrossRefGoogle Scholar
  23. Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG. Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J. 2012;57(Suppl 1):46–60.CrossRefGoogle Scholar
  24. Shetty VS, Reis MN, Aulino JM, Berger KL, Broder J, Choudhri AF, et al. ACR appropriateness criteria head trauma. J Am Coll Radiol. 2016;13(6):668–79.CrossRefGoogle Scholar
  25. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol. 2010;194(1):191–9.CrossRefGoogle Scholar
  26. Vogl TJ, Schulz B, Bauer RW, Stover T, Sader R, Tawfik AM. Dual-energy CT applications in head and neck imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S34–9.CrossRefGoogle Scholar
  27. Vos PE, Alekseenko Y, Battistin L, Ehler E, Gerstenbrand F, Muresanu DF, et al. Mild traumatic brain injury. Eur J Neurol. 2012;19(2):191–8.CrossRefGoogle Scholar
  28. Wintermark M, Sanelli PC, Anzai Y, Tsiouris AJ, Whitlow CT, Institute ACRHI, et al. Imaging evidence and recommendations for traumatic brain injury: conventional neuroimaging techniques. J Am Coll Radiol. 2015;12(2):e1–14.CrossRefGoogle Scholar
  29. Zacharia TT, Kanekar SG, Nguyen DT, Moser K. Optimization of patient dose and image quality with z-axis dose modulation for computed tomography (CT) head in acute head trauma and stroke. Emerg Radiol. 2011;18(2):103–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Wouter J. P. Henneman
    • 1
  • Alida A. Postma
    • 1
  • Thomas Treumann
    • 2
  1. 1.Department of RadiologyMaastricht University Medical CenterMaastrichtNetherlands
  2. 2.Central Institute of RadiologyLuzerner KantonsspitalLuzernSwitzerland

Personalised recommendations