Advertisement

Resource Management System for HPC Computing

  • Ewa Niewiadomska-SzynkiewiczEmail author
  • Piotr Arabas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 743)

Abstract

The concept of the architecture of a control framework for reducing power consumption in a large scale HPC (High Performance Computing) system is presented and discussed. The implementation of this framework provides a global computing resource manager that is implemented in the central control level, energy-efficient backbone network connecting computing farms (clusters) and data centers and a local resource manager implemented in each cluster. The decisions about activity and power status of computer and network equipment are determined by solving the problem of minimizing the energy used by the whole HPC system. A simulation-based optimization scheme is utilized to calculate optimal allocation of a set of tasks to clusters.

Keywords

Green HPC systems Energy aware resource allocation Energy-efficient grids and clouds Simulation-based optimization 

Notes

Acknowledgment

This work was supported by National Science Centre grant 2015/17/B/ST6/01885.

References

  1. 1.
    Akhter, N., Othma, M.: Energy aware resource allocation of cloud data center: review and open issues. Cluster Comput. 19(3), 1163–1182 (2016)CrossRefGoogle Scholar
  2. 2.
    Bolla, R., Bruschi, R., Davoli, et al.: Large-scale validation and benchmarking of a network of power-conservative systems using ETSI’s green abstraction layer. Trans. Emerg. Telecommun. Technol. 27(3), 451–468 (2016).  https://doi.org/10.1002/ett.3006
  3. 3.
    Chiang, Y., Ouyang, Y., Hsu, C.: An efficient green control algorithm in cloud computing for cost optimization. IEEE Trans. Cloud Comput. 3(2), 145–155 (2015).  https://doi.org/10.1109/TCC.2014.2350492 CrossRefGoogle Scholar
  4. 4.
    Cotes-Ruiz, I., Prado, R., García-Galán, S.: Dynamic voltage frequency scaling simulator for real workflows energy-aware management in green cloud computing. PLoS ONE 12(1), e0169803 (2017).  https://doi.org/10.1371/journal.pone.0169803
  5. 5.
    Hameed, A., Khoshkbarforoushha, A., Ranjan, R., et al.: A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing 98(7), 751–774 (2016)Google Scholar
  6. 6.
    Karpowicz, M.: Energy-efficient CPU frequency control for the Linux system. Concurrency Comput. Pract. Exp. 28(2), 420–437 (2016).  https://doi.org/10.1002/cpe.3476 CrossRefGoogle Scholar
  7. 7.
    Karpowicz, M., Arabas, P., Niewiadomska-Szynkiewicz, E.: Design and implementation of energy-aware application-specific CPU frequency governors for the heterogeneous distributed computing systems. Future Gener. Comput. Syst. 78, 302–315 (2018).  https://doi.org/10.1016/j.future.2016.05.011 CrossRefGoogle Scholar
  8. 8.
    Karpowicz, M., Niewiadomska-Szynkiewicz, E., Arabas, P., Sikora, A.: Energy and power efficiency in cloud. In: Resource Management for Big Data Platforms: Algorithms, Modelling, and High-Performance Computing Techniques. Computer Communications and Networks Series, pp. 97–127. Springer (2016)Google Scholar
  9. 9.
    Kołodziej, J., Khan, S., Wang, L., Zomaya, A.: Energy efficient genetic-based schedulers in computational grids. Concurrency Comput. Pract. Exp. 27, 809–829 (2015)CrossRefGoogle Scholar
  10. 10.
    Niewiadomska-Szynkiewicz, E., Błaszczyk, J.: Simulation-based optimization methods applied to large scale water systems control. In: Proceedings of the 16th IEEE International Conference on Scalable Computing and Communications (ScalCom 2016), Touluse, Francja, pp. 1004–1009 (2016)Google Scholar
  11. 11.
    Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., et al.: Dynamic power management in energy-aware computer networks and data intensive computing systems. Future Gener. Comput. Syst. 37, 284–296 (2014)CrossRefGoogle Scholar
  12. 12.
    Pop, F., Iosup, A., Prodan, A.: HPS-HDS: high performance scheduling for heterogeneous distributed systems. Future Gener. Comput. Syst. 78(part 1), 242–244 (2018)Google Scholar
  13. 13.
    Sotiriadis, S., Bessis, N., Xhafa, F., Antonopoulos, N.: From meta-computing to interoperable infrastructures: a review of meta-schedulers for HPC, Grid and Cloud. In: Proceedings 26th International Conference on Advanced Information Networking and Applications, pp. 874–883 (2012)Google Scholar
  14. 14.
    Spiliopoulos, V., Kaxiras, S., Keramidas, G.: Green governors: a framework for continuously adaptive DVFS. In: Proceedings of the 2011 International Green Computing Conference and Workshops, IGCC 2011, pp. 1–8 (2011)Google Scholar
  15. 15.
    Vasiliu, L., Pop, F., Negru, C., et al.: A hybrid scheduler for many task computing in big data systems. Int. J. App. Math. Comp. Sci. 27(2), 385–399 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarszawaPoland

Personalised recommendations