Imaging in Cartilage Restoration

  • Goetz H. Welsch


Imaging of cartilage and cartilage repair is of utmost importance to diagnose possible cartilage defects and after cartilage restoration to assess the success of the cartilage therapy. Morphological magnetic resonance imaging (MRI) is considered the gold standard to assess joint anatomy and possible injuries or overuse in detail. Besides ligaments and other soft tissue, e.g., the meniscus in the knee joint or the acetabular labrum in the hip, the cartilage can be depicted in detail. Possible cartilage defects, acute and chronic cartilage injuries, as well as osteochondral defects can be visualized. A preoperative scoring and classification system for the assessment of preoperative cartilage defect severity was implemented recently with the Area Measurement And DEpth and Underlying Structures (AMADEUS) score. Comparably after cartilage repair, the repair tissue and the adjacent structures, as well as the whole joint, can be diagnosed. In the postoperative follow-up, the Magnetic resonance Observation of Cartilage Repair Tissue (MOCART) scoring system has been shown to provide a valid instrument to assess the site where cartilage repair has taken place. A more detailed evaluation of the repair tissue together with the whole joint can be achieved by the Cartilage Repair Osteoarthritis Knee Score (CROAKS).

Due to high-field MR systems, advanced coil technology, and sophisticated sequence protocols, biochemical MRI is capable of visualizing the composition of cartilage and cartilage repair tissue based on its hydration, its collagen matrix, and its glycosaminoglycan (GAG) content. Cartilage physiology and ultrastructure can be determined, changes in cartilage macromolecules can be detected, cartilage repair tissue maturation can thus be assessed, and the quality of the repair tissue can be differentiated, e.g., after different cartilage repair procedures.


MRI Cartilage repair AMDEUS MOCART CROAKS Morphological MRI Biochemical MRI T2 mapping dGEMRIC 


  1. 1.
    Recht M, Bobic V, Burstein D, Disler D, Gold G, Gray M, et al. Magnetic resonance imaging of articular cartilage. Clin Orthop Relat Res. 2001 (391 Suppl):S379–96. PubMed PMID: 11603721.CrossRefGoogle Scholar
  2. 2.
    Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol. 1996;167(1):127–32. PubMed PMID: 8659356CrossRefPubMedGoogle Scholar
  3. 3.
    Peterfy CG, van Dijke CF, Lu Y, Nguyen A, Connick TJ, Kneeland JB, et al. Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging. AJR Am J Roentgenol. 1995;165(2):371–5. PubMed PMID: 7618560CrossRefPubMedGoogle Scholar
  4. 4.
    Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80(9):1276–84. PubMed PMID: 9759811. engCrossRefPubMedGoogle Scholar
  5. 5.
    Trattnig S, Huber M, Breitenseher MJ, Trnka HJ, Rand T, Kaider A, et al. Imaging articular cartilage defects with 3D fat-suppressed echo planar imaging: comparison with conventional 3D fat-suppressed gradient echo sequence and correlation with histology. J Comput Assist Tomogr. 1998;22(1):8–14. PubMed PMID: 9448754CrossRefPubMedGoogle Scholar
  6. 6.
    Kramer J, Recht MP, Imhof H, Stiglbauer R, Engel A. Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr. 1994;18(2):218–24. PubMed PMID: 7510315. engCrossRefPubMedGoogle Scholar
  7. 7.
    Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23. PubMed PMID: 16203119CrossRefPubMedGoogle Scholar
  8. 8.
    Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol. 2004;52(3):310–9. PubMed PMID: 15544911CrossRefPubMedGoogle Scholar
  9. 9.
    Jungmann PM, Welsch GH, Brittberg M, Trattnig S, Braun S, Imhoff AB, et al. Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage. 2017;8(3):272–82. PubMed PMID: 28618873CrossRefPubMedGoogle Scholar
  10. 10.
    Azer NM, Winalski CS, Minas T. MR imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin N Am. 2004;42(1):43–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Gomoll AH, Yoshioka H, Watanabe A, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2:389–93.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Welsch GH, Zak L, Mamisch TC, Paul D, Lauer L, Mauerer A, et al. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (true-FISP) and standard 2D sequences. J Magn Reson Imaging. 2010;33(1):180–8. PubMed PMID: 21182137. engCrossRefGoogle Scholar
  13. 13.
    Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 tesla. Investig Radiol. 2009;44(9):603–12. PubMed PMID: 19692843. engCrossRefGoogle Scholar
  14. 14.
    Apprich S, Mamisch TC, Welsch GH, Stelzeneder D, Albers C, Totzke U, et al. Quantitative T2 mapping of the patella at 3.0T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol. 2011.; PubMed PMID: 21497472. EngGoogle Scholar
  15. 15.
    Apprich S, Welsch GH, Mamisch TC, Szomolanyi P, Mayerhoefer M, Pinker K, et al. Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 tesla. Osteoarthr Cartil. 2011;18(9):1211–7. PubMed PMID: 20633680. engCrossRefGoogle Scholar
  16. 16.
    Siebold R, Suezer F, Schmitt B, Trattnig S, Essig M. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. Knee Surg Sports Traumatol Arthrosc. 2017.; PubMed PMID: 28258330Google Scholar
  17. 17.
    Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthr Cartil. 2013;21(10):1425–35. PubMed PMID: 23891696. engCrossRefPubMedGoogle Scholar
  18. 18.
    Roemer FW, Guermazi A, Trattnig S, Apprich S, Marlovits S, Niu J, et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS). Osteoarthr Cartil. 2014;22(6):779–99. PubMed PMID: 24685525CrossRefPubMedGoogle Scholar
  19. 19.
    Eshed I, Trattnig S, Sharon M, Arbel R, Nierenberg G, Konen E, et al. Assessment of cartilage repair after chondrocyte transplantation with a fibrin-hyaluronan matrix--correlation of morphological MRI, biochemical T2 mapping and clinical outcome. Eur J Radiol. 2012;81(6):1216–23. PubMed PMID: 21458942CrossRefPubMedGoogle Scholar
  20. 20.
    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90. PubMed PMID: 14972335CrossRefPubMedGoogle Scholar
  21. 21.
    Kornaat PR, Ceulemans RY, Kroon HM, Riyazi N, Kloppenburg M, Carter WO, et al. MRI assessment of knee osteoarthritis: knee osteoarthritis scoring system (KOSS)--inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skelet Radiol. 2005;34(2):95–102. PubMed PMID: 15480649CrossRefGoogle Scholar
  22. 22.
    Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthr Cartil. 2011;19:990–1002.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Soellner ST, Goldmann A, Muelheims D, Welsch GH, Pachowsky ML. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee. Osteoarthr Cartil. 2017.; PubMed PMID: 28801212Google Scholar
  24. 24.
    Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S. Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed. 2016;29(2):206–15. PubMed PMID: 25810325CrossRefPubMedGoogle Scholar
  25. 25.
    Kretzschmar M, Bieri O, Miska M, Wiewiorski M, Hainc N, Valderrabano V, et al. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS). Eur Radiol 2015;25(4):980–6. PubMed PMID: 25407662.CrossRefPubMedGoogle Scholar
  26. 26.
    Jungmann PM, Baum T, Bauer JS, Karampinos DC, Erdle B, Link TM, et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? Biomed Res Int. 2014;2014:840170. PubMed PMID: 24877139. Pubmed Central PMCID: 4024422 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bekkers JE, Bartels LW, Vincken KL, Dhert WJ, Creemers LB, Saris DB. Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Am J Sports Med. 2013.; PubMed PMID: 23585485. EngGoogle Scholar
  28. 28.
    Schmitt B, Zbyn S, Stelzeneder D, Jellus V, Paul D, Lauer L, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2012;260(1):257–64. PubMed PMID: 21460030. engCrossRefGoogle Scholar
  29. 29.
    Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology. 1997;205(2):551–8. PubMed PMID: ISI:A1997YD15100042CrossRefPubMedGoogle Scholar
  30. 30.
    Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magnet Reson Med. 2003;49(3):488–92. PubMed PMID: ISI:000181297200011CrossRefGoogle Scholar
  31. 31.
    Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol. 2004;182(1):167–72. PubMed PMID: ISI:000188495900040CrossRefGoogle Scholar
  32. 32.
    Watanabe A, Wada Y, Obata T, Ueda T, Tamura M, Ikehira H, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201–8. PubMed PMID: ISI:000236669100026CrossRefPubMedGoogle Scholar
  33. 33.
    Trattnig S, Burstein D, Pinker K, Szomolanyi P, Welsch GH, Mamisch TC. T1(Gd) gives comparable information as delta T1 relaxation rate in dGEMRIC evaluation of cartilage repair tissue. Investig Radiol. 2009:In Press.Google Scholar
  34. 34.
    Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S, et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 tesla. Eur Radiol. 2008.; PubMed PMID: 18246356. EngGoogle Scholar
  35. 35.
    Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70. PubMed PMID: 18268341. engCrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53. PubMed PMID: 16523468CrossRefPubMedGoogle Scholar
  37. 37.
    Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821. PubMed PMID: 17075961. Epub 2006/11/01. engCrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004;169(2):300–7. PubMed PMID: 15261626CrossRefPubMedGoogle Scholar
  39. 39.
    Mosher TJ, Dardzinski BJ, Cartilage MRI. T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68. PubMed PMID: 15643574CrossRefPubMedGoogle Scholar
  40. 40.
    Watrin-Pinzano A, Ruaud JP, Cheli Y, Gonord P, Grossin L, Bettembourg-Brault I, et al. Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. Magn Reson Mater Phy. 2004;17(3–6):219–28. PubMed PMID: 15580373CrossRefGoogle Scholar
  41. 41.
    White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 2006;241(2):407–14. PubMed PMID: 17057068.CrossRefPubMedGoogle Scholar
  42. 42.
    Trattnig S, Mamisch TC, Welsch GH, Glaser C, Szomolanyi P, Gebetsroither S, et al. Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 tesla: an in vivo cross-sectional study. Investig Radiol. 2007;42(6):442–8. PubMed PMID: 17507817. engCrossRefGoogle Scholar
  43. 43.
    Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures--initial experience. Radiology. 2008;247(1):154–61. PubMed PMID: 18372466. engCrossRefPubMedGoogle Scholar
  44. 44.
    Murphy BJ. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skelet Radiol 2001;30(6):305–11. PubMed PMID: 11465769.CrossRefPubMedGoogle Scholar
  45. 45.
    Hughes T, Welsch GH, Trattnig S, Brandi L, Domayer S, Mamisch TC. T2-star relaxation as a means to Diffrentiatie cartilage repair tissue after microfracturing therapy. Intern Soc. Magn Reson Med. 2007;15:183.Google Scholar
  46. 46.
    Wietek B, Martirosian P, Machann J, Mueller-Horvath C, Claussen CD, Schick F. T2 and T2* mapping of the human femoral-Tibial cartilage at 1.5 and 3 tesla. Intern Soc. Magn Reson Med. 2007;15:516.Google Scholar
  47. 47.
    Welsch GH, Trattnig S, Scheffler K, Szomonanyi P, Quirbach S, Marlovits S, et al. Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging. 2008;28(4):979–86. PubMed PMID: 18821633. Epub 2008/09/30. engCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Goetz H. Welsch
    • 1
  1. 1.UKE Athleticum, University Hospital Hamburg-Eppendorf (UKE)HamburgGermany

Personalised recommendations