The Osteochondral Unit: The Importance of the Underlying Subchondral Bone

  • Tamás Oláh
  • Henning MadryEmail author


The term osteochondral unit reflects the tight functional association of the articular cartilage, calcified cartilage, and the subchondral bone. Due to its special composition of collagen type II, aggrecan, and water, the extracellular matrix of the articular cartilage provides exceptional tensile strength and compressive resilience to the tissue. A radiologically denser, discrete band of mineralized cartilage, the tidemark separates the articular cartilage from the calcified cartilage. The hydroxyapatite-containing calcified cartilage forms an undulating transitional zone, attaching the cartilage to the subchondral bone. The subchondral bone plays a key role in mechanically and metabolically supporting the articular cartilage, maintaining the joint shape, and absorbing shock. It consists of two regions: the subchondral bone plate is a dense bony lamella which merges into a network of trabecular bone called the subarticular spongiosa. The cavities of the subchondral bone contain blood vessels which are important sources of nutrients and signaling molecules for the deeper layers of cartilage. Several diseases affect the osteochondral unit. The most well-known of them is osteoarthritis (OA), a disease of the entire joint including the cartilage, subchondral bone, and other structures. Avascular necrosis and osteochondritis dissecans are diseases primarily affecting the subchondral bone, often leading to OA and focal cartilage defects. In these diseases and during the repair of osteochondral defects, phenomena like subchondral bone cysts, bone marrow edema, and intralesional osteophytes are common findings in both patients and translational animal models. Currently all “cartilage restoration” strategies now recognize the importance of considering the entire osteochondral unit during implementation, to avoid chondral deterioration or even delamination.


Osteochondral unit Articular cartilage Calcified cartilage Subchondral bone Osteoarthritis Avascular necrosis Osteochondritis dissecans Subchondral bone cysts Bone marrow edemas Intralesional osteophytes 


Conflicts of Interests

Neither Henning Madry, Tamás Oláh, nor any immediate family member has received anything of value from or has stock or stock options held in a commercial company or institution related directly or indirectly to the subject of this article.


  1. 1.
    Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986;4:379–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Chilelli BJ, Cole BJ, Farr J, Lattermann C, Gomoll AH. The four most common types of knee cartilage damage encountered in practice: how and why orthopaedic surgeons manage them. Instr Course Lect. 2017;66:507–30.PubMedGoogle Scholar
  3. 3.
    Cruz AI Jr, Shea KG, Ganley TJ. Pediatric knee osteochondritis Dissecans lesions. Orthop Clin North Am. 2016;47:763–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Demange MK, Minas T, von Keudell A, Sodha S, Bryant T, Gomoll AH. Intralesional osteophyte regrowth following autologous chondrocyte implantation after previous treatment with marrow stimulation technique. Cartilage. 2017;8:131–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Farr J, Cole B, Dhawan A, Kercher J, Sherman S. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res. 2011;469:2696–705.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, Kazis L, Gale DR. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 2016;4:16028.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gao L, Orth P, Goebel LK, Cucchiarini M, Madry H. A novel algorithm for a precise analysis of subchondral bone alterations. Sci Rep. 2016;6:32982.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gao L, Orth P, Muller-Brandt K, Goebel LK, Cucchiarini M, Madry H. Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair. Sci Rep. 2017;7:45189.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12:632–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18:434–47.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Harada Y, Wevers HW, Cooke TD. Distribution of bone strength in the proximal tibia. J Arthroplast. 1988;3:167–75.CrossRefGoogle Scholar
  13. 13.
    Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J. The cartilage-bone interface. J Knee Surg. 2012;25:85–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10:180–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Investig Radiol. 2000;35:581–8.CrossRefGoogle Scholar
  16. 16.
    Karim AR, Cherian JJ, Jauregui JJ, Pierce T, Mont MA. Osteonecrosis of the knee: review. Ann Transl Med. 2015;3:6.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kawcak CE, McIlwraith CW, Norrdin RW, Park RD, James SP. The role of subchondral bone in joint disease: a review. Equine Vet J. 2001;33:120–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Lerebours F, ElAttrache NS, Mandelbaum B. Diseases of subchondral bone 1. Sports Med Arthrosc. 2016;24:44–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15:223.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lyons TJ, Stoddart RW, McClure SF, McClure J. The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol. 2005;36:207–15.CrossRefPubMedGoogle Scholar
  21. 21.
    Madry H. The subchondral bone: a new frontier in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2010;18:417–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Madry H, Gao L, Eichler H, Orth P, Cucchiarini M. Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects. Stem Cells Int. 2017;2017:1609685.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Madry H, Orth P, Cucchiarini M. Role of the subchondral bone in articular cartilage degeneration and repair. J Am Acad Orthop Surg. 2016;24:e45–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:419–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Marenzana M, Arnett TR. The key role of the blood supply to bone. Bone Res. 2013;1:203–15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Menetrey J, Unno-Veith F, Madry H, Van Breuseghem I. Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2010;18:463–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res. 1994;12:637–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Mithoefer K, Venugopal V, Manaqibwala M. Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med. 2016;44:2057–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Nepple JJ, Milewski MD, Shea KG. Research in osteochondritis Dissecans of the knee: 2016 update. J Knee Surg. 2016;29:533–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Niemeyer P, Porichis S, Steinwachs M, Erggelet C, Kreuz PC, Schmal H, Uhl M, Ghanem N, Sudkamp NP, Salzmann G. Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med. 2014;42:150–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech. 1997;37:324–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Orth P, Cucchiarini M, Kohn D, Madry H. Alterations of the subchondral bone in osteochondral repair--translational data and clinical evidence. Eur Cell Mater. 2013;25:299–316. discussion 314-296CrossRefPubMedGoogle Scholar
  33. 33.
    Orth P, Goebel L, Wolfram U, Ong MF, Graber S, Kohn D, Cucchiarini M, Ignatius A, Pape D, Madry H. Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med. 2012;40:828–36.CrossRefPubMedGoogle Scholar
  34. 34.
    Pape D, Filardo G, Kon E, van Dijk CN, Madry H. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:448–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Schaible HG. Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep. 2012;14:549–56.CrossRefPubMedGoogle Scholar
  36. 36.
    Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema? Radiology. 1988;167:757–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Experimental Orthopedics, Saarland UniversityHomburg/SaarGermany

Personalised recommendations