Orthobiologics: Today and Tomorrow

  • Zaamin B. Hussain
  • Jorge Chahla
  • Robert F. LaPrade
  • Bert R. Mandelbaum


Biologic-based therapy for cartilage pathology has gained considerable recognition due to being minimally invasive, offering capacity for faster healing, and potential for rapid recovery. These therapies include tissue-specific cell culture, marrow-venting procedures, platelet-rich plasma (PRP), bone marrow aspirate concentrate (BMAC), and cell-based therapies. Reports thus far have yielded promising results with a relatively robust safety profile. Although important advances have been made in the field, further well-designed clinical trials are required. Current limitations include their high cost and limited long-term evidence of efficacy. This chapter aims to review the existing literature for biologic-based treatment options for cartilage and identify potential avenues for development.


Biologics Platelet-rich plasma Bone marrow aspirate Cell therapy Scaffolds 


  1. 1.
    LaPrade RF, Geeslin AG, Murray IR, et al. Biologic treatments for sports injuries II think tank-current concepts, future research, and barriers to advancement, part 1: biologics overview, ligament injury, Tendinopathy. Am J Sports Med. 2016;44(12):3270–83.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu Y, Yuan M, Meng HY, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage/OARS, Osteoarthritis Res Soc. 2013;21:1627–37.CrossRefGoogle Scholar
  3. 3.
    Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy – future or trend? Arthritis Res Ther. 2012;14:219.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:225–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Rughetti A, Giusti I, D'Ascenzo S, et al. Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfus. 2008;6:12–7.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Fleming BC, Proffen BL, Vavken P, Shalvoy MR, Machan JT, Murray MM. Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23:1161–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone. 2004;34:665–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Yoshida R, Cheng M, Murray MM. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture. J Orthop Res: Off Publ Orthop Res Soc. 2014;32:291–5.CrossRefGoogle Scholar
  9. 9.
    Kraeutler MJ, Garabekyan T, Mei-Dan O. The use of platelet-rich plasma to augment conservative and surgical treatment of hip and pelvic disorders. Muscles Ligaments Tendons J. 2016;6:410–9.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44:792–800.CrossRefPubMedGoogle Scholar
  11. 11.
    Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41:356–64.CrossRefPubMedGoogle Scholar
  12. 12.
    Cerza F, Carni S, Carcangiu A, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40:2822–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Sanchez M, Fiz N, Azofra J, et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy:J. Arthrosc. Relat. Surg.: Off Publ Arthroscopy Assoc North Am Int Arthroscopy Assoc. 2012;28:1070–8.CrossRefGoogle Scholar
  14. 14.
    Filardo G, Di Matteo B, Di Martino A, et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med. 2015;43:1575–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Filardo G, Kon E, Di Martino A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Chahla J, Cinque ME, Piuzzi NS, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopedic literature. J Bone Joint Surg Am. 2017. ePub Ahead of Print.Google Scholar
  17. 17.
    Wolfstadt JI, Cole BJ, Ogilvie-Harris DJ, Viswanathan S, Chahal J. Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports health. 2015;7:38–44.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Abrams GD, Frank RM, Fortier LA, Cole BJ. Platelet-rich plasma for articular cartilage repair. Sports Med Arthrosc. 2013;21:213–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Duif C, Vogel T, Topcuoglu F, Spyrou G, von Schulze Pellengahr C, Lahner M. Does intraoperative application of leukocyte-poor platelet-rich plasma during arthroscopy for knee degeneration affect postoperative pain, function and quality of life? A 12-month randomized controlled double-blind trial. Arch Orthop Trauma Surg. 2015;135:971–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Dallari D, Stagni C, Rani N, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med. 2016;44:664–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Battaglia M, Guaraldi F, Vannini F, et al. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics. 2013;36:e1501–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu J, Song W, Yuan T, Xu Z, Jia W, Zhang C. A comparison between platelet-rich plasma (PRP) and hyaluronate acid on the healing of cartilage defects. PLoS One. 2014;9:e97293.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Milano G, Deriu L, Sanna Passino E, et al. The effect of autologous conditioned plasma on the treatment of focal chondral defects of the knee. An experimental study. Int J Immunopathol Pharmacol. 2011;24:117–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Goodrich LR, Chen AC, Werpy NM, et al. Addition of mesenchymal stem cells to autologous platelet-enhanced fibrin scaffolds in chondral defects: does it enhance repair? J Bone Joint Surg Am. 2016;98:23–34.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6:82–97.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Hernigou P, Homma Y, Flouzat Lachaniette CH, et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop. 2013;37:2279–87.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Fortier LA, Potter HG, Rickey EJ, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92:1927–37.CrossRefPubMedGoogle Scholar
  28. 28.
    Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62.PubMedGoogle Scholar
  29. 29.
    Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–46.CrossRefPubMedGoogle Scholar
  30. 30.
    Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med. 2016;4:2325967115625481.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Oliver KS, Bayes M, Crane D, Pathikonda C. Clinical outcome of bone marrow concentrate in knee osteoarthritis. J Prolotherapy. 2015;7:e937–3946.Google Scholar
  32. 32.
    Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016.CrossRefPubMedGoogle Scholar
  33. 33.
    Wehling P, Moser C, Frisbie D, et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs. 2007;21:323–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim JD, Lee GW, Jung GH, et al. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol. 2014;24:1505–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Hauser RA, Orlofsky A. Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:65–72.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. Biomed Res Int. 2014;2014:370621.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017;45:82–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44:2846–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee. 2015;22:30–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Krych AJ, Nawabi DH, Farshad-Amacker NA, et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med. 2016;44:91–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ 3rd. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016;CrossRefPubMedGoogle Scholar
  42. 42.
    Skowronski J, Skowronski R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane--results. Ortop Traumatol Rehabil. 2013;15:69–76.CrossRefPubMedGoogle Scholar
  43. 43.
    Skowronski J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells - results. Ortop Traumatol Rehabil. 2013;15:195–204.CrossRefPubMedGoogle Scholar
  44. 44.
    Chahla J, LaPrade RF, Mardones R, et al. Biological therapies for cartilage lesions in the hip: a new horizon. Orthopedics. 2016;39:e715–23.CrossRefPubMedGoogle Scholar
  45. 45.
    Chahla J, Piuzzi NS, Mitchell JJ, et al. Intra-articular cellular therapy for osteoarthritis and focal cartilage defects of the knee: a systematic review of the literature and study quality analysis. J Bone Joint Surg Am. 2016;98:1511–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Intra-articular implantation of mesenchymal stem cells, part 1: a review of the literature for prevention of postmeniscectomy osteoarthritis. Orthop J Sports Med. 2017;5:2325967116680815.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Intra-articular implantation of mesenchymal stem cells, part 2: a review of the literature for meniscal regeneration. Orthop J Sports Med. 2017;5:2325967116680814.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Piuzzi NS, Chahla J, Schrock JB, et al. Evidence for the use of cell-based therapy for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast. 2017;32:1698–708.CrossRefGoogle Scholar
  49. 49.
    Muschler GF, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002;395:66–80.CrossRefGoogle Scholar
  50. 50.
    Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–20.PubMedGoogle Scholar
  51. 51.
    Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant. 2016;25:937–50.CrossRefPubMedGoogle Scholar
  52. 52.
    Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop. 2016;7:149–55.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Zlotnicki JP, Geeslin AG, Murray IR, et al. Biologic treatments for sports injuries II think tank-current concepts, future research, and barriers to advancement, part 3: articular cartilage. Orthop J Sports Med. 2016;4:2325967116642433.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefGoogle Scholar
  55. 55.
    Ruetze M, Richter W. Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity. Expert Rev Mol Med. 2014;16:e9.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Wu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. J Cell Physiol. 2013;228:938–44.CrossRefPubMedGoogle Scholar
  57. 57.
    Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopedics. Knee Surg Sports Traumatol Arthrosc. 2013;21:1717–29.CrossRefPubMedGoogle Scholar
  58. 58.
    LaPrade RF, Dragoo JL, Koh JL, Murray IR, Geeslin AG, Chu CR. AAOS research symposium updates and consensus: biologic treatment of orthopedic injuries. J Am Acad Orthop Surg. 2016;24:e62–78.CrossRefPubMedGoogle Scholar
  59. 59.
    Jang KM, Lee JH, Park CM, Song HR, Wang JH. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sports Traumatol Arthrosc. 2014;22:1434–44.CrossRefPubMedGoogle Scholar
  60. 60.
    Jung M, Kaszap B, Redohl A, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant. 2009;18:923–32.CrossRefPubMedGoogle Scholar
  61. 61.
    Nam HY, Karunanithi P, Loo WC, et al. The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther. 2013;15:R129.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res. 2005;8:150–61.CrossRefPubMedGoogle Scholar
  63. 63.
    Castagnini F, Pellegrini C, Perazzo L, Vannini F, Buda R. Joint sparing treatments in early ankle osteoarthritis: current procedures and future perspectives. J Exp Orthop. 2016;3:3.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Chen C, Bang S, Cho Y, et al. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res. 2016;20:10.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017.Google Scholar
  66. 66.
    Uematsu K, Hattori K, Ishimoto Y, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26:4273–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Thiem A, Bagheri M, Grosse-Siestrup C, Zehbe R. Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture – from in vitro to in vivo testing. Mater Sci Eng C Mater Biol Appl. 2016;62:585–95.CrossRefPubMedGoogle Scholar
  68. 68.
    Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14:149–65.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.CrossRefPubMedGoogle Scholar
  70. 70.
    Matsumoto T, Kubo S, Meszaros LB, et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 2008;58:3809–19.CrossRefPubMedGoogle Scholar
  71. 71.
    Payne KA, Didiano DM, Chu CR. Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthr Cartil. 2010;18:705–13.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12:8.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Chandran P, Le Y, Li Y, et al. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. Leuk Res. 2015;39:486–93.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zaamin B. Hussain
    • 1
  • Jorge Chahla
    • 2
  • Robert F. LaPrade
    • 3
  • Bert R. Mandelbaum
    • 4
  1. 1.School of Clinical MedicineUniversity of CambridgeCambridgeUK
  2. 2.Department of Sports MedicineSanta Monica Orthopedic and Sports Medicine GroupSanta MonicaUSA
  3. 3.The Steadman ClinicVailUSA
  4. 4.Cedars Sinai – Kerlan Jobe InstituteSanta MonicaUSA

Personalised recommendations