The Evolution of Cartilage Restoration

  • Jack Farr
  • Andreas H. GomollEmail author


After more than 30 years, cartilage restoration continues to be a highly dynamic field. Not only are the cartilage implants changing, but also the surgical approach to using the implant and the undeniable restrictions imposed by social medicine and insurance. Initially, various schools of surgical thought would propose use of their one specific implant. However, this has gradually evolved to a common goal of applying the best implant for the individual knee lesion and specific patient. At the same time, it has become evident to all that it is necessary to optimize the limb and joint environment for all implants—not only mechanically but also biologically. This fusion of thought has resulted in a demand match approach for applying and adapting treatment algorithms. This chapter will present a broad overview of cartilage restoration from inception to present with future chapters exploring each approach in detail.


Cartilage history Cartilage restoration evolution Cartilage trends 


  1. 1.
    Lexer E. Joint transplantation and arthroplasty. Surg Gynecol Obstet. 1925;40:782–809.Google Scholar
  2. 2.
    Meyers MH, Akeson W, Convery R. Resurfacing of the knee with fresh osteochondral allograft. J Bone Joint Surg Am. 1989;71:704–13.CrossRefPubMedGoogle Scholar
  3. 3.
    Convery FR, Meyers MH, Akeson WH. Fresh osteochondral allografting of the femoral condyle. Clin Orthop Relat Res. 1991;273:139–45.Google Scholar
  4. 4.
    Gross AE, Langer F, Houpt J, et al. Allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Transplant Proc. 1976;8:129–32.PubMedGoogle Scholar
  5. 5.
    Gross AE, Silverstein EA, Falk J, et al. The allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Clin Orthop Relat Res. 1975;108:7–14.CrossRefGoogle Scholar
  6. 6.
    Ficat RP, Ficat C, Gedeon P, et al. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res. 1979;144:74–83.Google Scholar
  7. 7.
    Pridie K. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Am. 1959;41:618–9.Google Scholar
  8. 8.
    Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2(1):54–69.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27(11):1432–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen H, Chevrier A, Hoemann CD, Sun J, Ouynag W, Buschmann MD. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med. 2011;39(8):1731–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen H, Chevrier A, Hoemann CD, Sun J, Lascau-Coman V, Buschmann MD. Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits. Osteoarthr Cartil. 2013;21(7):999–1007.CrossRefPubMedGoogle Scholar
  13. 13.
    Peterson L, Menche D, Grande D, et al. Chondrocyte transplantation—an experimental model in the rabbit. Trans Orthop Res Soc. 1984;9:218.Google Scholar
  14. 14.
    Hangody L, Kárpáti Z. New possibilities in the management of severe circumscribed cartilage damage in the knee. Magy Traumatol Ortop Kezseb Plasztikai Seb. 1994;37:237–43.PubMedGoogle Scholar
  15. 15.
    Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18:67–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Fox EJ, Hau MA, Gebhardt MC, et al. Long-term followup of proximal femoral allografts. Clin Orthop Relat Res. 2002;397:106–13.CrossRefGoogle Scholar
  17. 17.
    Friedlaender GE, Mankin HJ. Transplantation of osteochondral allografts. Annu Rev Med. 1984;35:311–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Malinin TI, Mnaymneh W, Lo HK, et al. Cryopreservation of articular cartilage. Ultrastructural observations and long-term results of experimental distal femoral transplantation. Clin Orthop Relat Res. 1994;303:18–32.Google Scholar
  19. 19.
    Jomha NM, Lavoie G, Muldrew K, et al. Cryopreservation of intact human articular cartilage. J Orthop Res. 2002;20:1253–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Xia Z, Murray D, Hulley PA, et al. The viability and proliferation of human chondrocytes following cryopreservation. J Bone Joint Surg Br. 2008;90:1245–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Farr J, Gracitelli GC, Shah N, Chang EY, Gomoll AH. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med. 2016;44(8):2015–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Kainer MA, Linden JV, Whaley DN, et al. Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med. 2004;350:2564–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Guidance, Compliance & Regulatory Information (Biologics). [updated 2002; cited February 25, 2012].
  24. 24.
    Williams RJ, Ranawat AS, Potter HG, et al. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007;89:718–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Allen RT, Robertson CM, Pennock AT, et al. Analysis of stored osteochondral allografts at the time of surgical implantation. Am J Sports Med. 2005;33:1479–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Pallante AL, Bae WC, Chen AC, et al. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am J Sports Med. 2009;37(Suppl 1):24–32.CrossRefGoogle Scholar
  27. 27.
    Garrity JT, Stoker AM, Sims HJ, Cook JL. Improved osteochondral allograft preservation using serum-free media at body temperature. Am J Sports Med. 2012;40(11):2542–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim HT, Teng MS, Dang AC. Chondrocyte apoptosis: implications for osteochondral allograft transplantation. Clin Orthop Relat Res. 2008;466:1819–25.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kang RW, Friel NA, Williams JM, et al. Effect of impaction sequence on osteochondral graft damage: the role of repeated and varying loads. Am J Sports Med. 2010;38:105–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Pylawka TK, Wimmer M, Cole BJ, et al. Impaction affects cell viability in osteochondral tissues during transplantation. J Knee Surg. 2007;20:105–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Gross AE, Kim W, Las Heras F, et al. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res. 2008;466:1863–70.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Convery FR, Meyers MH, Akeson WH. Fresh osteochondral allografting of the femoral condyle. Clin Orthop Relat Res. 1991;273:139–45.Google Scholar
  33. 33.
    Williams JM, Virdi AS, Pylawka TK, et al. Prolonged-fresh preservation of intact whole canine femoral condyles for the potential use as osteochondral allografts. J Orthop Res. 2005;23:831–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Williams SK, Amiel D, Ball ST, et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85-A:2111–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Bujia J, Alsalameh S, Naumann A, et al. Humoral immune response against minor collagens type IX and XI in patients with cartilage graft resorption after reconstructive surgery. Ann Rheum Dis. 1994;53:229–34.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res. 1983;174:58–68.Google Scholar
  37. 37.
    Friedlaender GE, Horowitz MC. Immune responses to osteochondral allografts: nature and significance. Orthopedics. 1992;15:1171–5.PubMedGoogle Scholar
  38. 38.
    Yagishita K, Thomas BJ. Use of allograft for large hill-Sachs lesion associated with anterior glenohumeral dislocation. A case report. Injury. 2002;33:791–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am. 1984;66:107–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Sirlin CB, Brossmann J, Boutin RD, et al. Shell osteochondral allografts of the knee: comparison of MR imaging findings and immunologic responses. Radiology. 2001;219:35–43.CrossRefPubMedGoogle Scholar
  41. 41.
    Hunt HE, Sadr K, Deyoung AJ, Gortz S, Bugbee WD. The role of immunologic response in fresh osteochondral allografting of the knee. Am J Sports Med. 2014;42(4):886–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Oladeji LO, Stannard JP, Cook CR, Kfuri M, Crist BD, Smith MJ, Cook JL. Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med. 2017. [Epub ahead of print].
  43. 43.
    Stoker AM, Baumann CA, Stannard JP, Cook JL. Bone marrow aspirate concentrate versus platelet rich plasma to enhance osseous integration potential for osteochondral allografts. J Knee Surg. 2017. [Epub ahead of print].
  44. 44.
    Bardos T, Vancsodi J, Farkas B, Fazekas A, Nagy SA, Bogner P, Vermes C, Than P. Pilot study of cartilage repair in the knee joint with multiply incised chondral allograft. Cartilage. 2015;6(2):73–81.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Albrecht F, Roessner A, Zimmermann E. Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg. 1983;101:213–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Ahmed TAE, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue engineering Part B Reviews. 2010;16:305–29.CrossRefPubMedGoogle Scholar
  47. 47.
    Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42(6):1417–25.CrossRefPubMedGoogle Scholar
  48. 48.
    Tompkins M, Hamann JC, Diduch DR, Bonner KF, Hart JM, Wgathmey FW, Milewski MD, Gaskin CM. Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthroscopy. 2013;29910:1661–70.CrossRefGoogle Scholar
  49. 49.
    Bonner KF, Daner W, Yao JQ. 2-year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg. 2010;23:109–14.CrossRefPubMedGoogle Scholar
  50. 50.
    Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2:346–53.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2:54–69.CrossRefPubMedGoogle Scholar
  52. 52.
    Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391:S362–9.CrossRefGoogle Scholar
  53. 53.
    Sansone V, de Girolamo L, Pascale W, Melato M, Pascale V. Long-term results of abrasion arthroplasty for full-thickness cartilage lesions of the medial femoral condyle. Arthroscopy. 2015;31(3):396–403.CrossRefPubMedGoogle Scholar
  54. 54.
    Frisbie DD, Morisset S, Ho CP, et al. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med. 2006;34:1824–31.CrossRefPubMedGoogle Scholar
  55. 55.
    Beitzel K, McCarthy MB, Cote MP, et al. Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy. 2012;28:74–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Narbona-Carceles J, Vaquero J, Suarez-Sancho S, Forriol F, Fernandez-Santos ME. Bone marrow mesenchymal stem cell aspirates from alternative sources: si the knee as good as the iliac crest? Injury. 2014;45(Suppl 4):S42–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Gill TJ, McCulloch PC, Glasson SS, et al. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med. 2005;33(5):680.CrossRefPubMedGoogle Scholar
  58. 58.
    Marder RA, Hopkins G, Timmerman LA. Arthroscopic microfracture of chondral defects of the knee: a comparison of two postoperative treatments. Arthroscopy. 2005;21:152–8.CrossRefPubMedGoogle Scholar
  59. 59.
    McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc. 2008;16:196–201.CrossRefPubMedGoogle Scholar
  60. 60.
    Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandebaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63.CrossRefPubMedGoogle Scholar
  61. 61.
    Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19:477–84.CrossRefPubMedGoogle Scholar
  62. 62.
    Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004;86-A:455–64.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen H, Chevrier A, Hoemann CD, et al. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med. 2011;39:1731–40.CrossRefPubMedGoogle Scholar
  64. 64.
    Chen H, Sun J, Hoemann CD, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27:1432–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Chubinskaya S, Merrihew C, Cs-Szabo G, et al. Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem. 2000;48:239–50.CrossRefPubMedGoogle Scholar
  66. 66.
    Klein-Nulend J, Louwerse RT, Heyligers IC, et al. Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res. 1998;40:614–20.CrossRefPubMedGoogle Scholar
  67. 67.
    Klein-Nulend J, Semeins CM, Mulder JW, et al. Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng. 1998;4:305–13.CrossRefPubMedGoogle Scholar
  68. 68.
    Saw KY, Anz A, Merican S, Tay YG, Raqavanaidu K, Jee CS, McGuire DA. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy. 2011;27(4):493–506.CrossRefPubMedGoogle Scholar
  69. 69.
    McIlwraith CW, Frisbie DD, Rodkey WG, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011;27:1552–61.CrossRefPubMedGoogle Scholar
  70. 70.
    Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.CrossRefGoogle Scholar
  71. 71.
    Gomoll AH, Probst C, Farr J, et al. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med. 2009;37(Suppl 1):20–3. SCrossRefGoogle Scholar
  72. 72.
    Steinwachs M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy. 2009;25:208–11.CrossRefPubMedGoogle Scholar
  73. 73.
    Steinwachs M, Peterson L, Bobiv V, et al. Cell-seeded collagen matrix–supported autologous chondrocyte transplantation (ACT-CS): a consensus statement on surgical technique. Cartilage. 2012;3:5–12.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38:1259–71.CrossRefPubMedGoogle Scholar
  75. 75.
    Wang Y, Dono, D, Duguid J, et al. A new method to evaluate viability of advanced cell therapy and tissue engineering products. International Cartilage Repair Society meeting. Miami: FL. Poster presentation; 2009, May 24–26.Google Scholar
  76. 76.
    Rapko S, Zhang M, Richards B, et al. Identification of the chondrocyte lineage using microfibrilassociated glycoprotein-2, a novel marker which distinguishes chondrocytes from synovial cells. Tissue Eng, in press.Google Scholar
  77. 77.
    Parker A, Rapko S, Duguay SJ. Evaluation of gene markers to predict the potential for chondrogenesis of cells in MACI® implants. International Cartilage Repair Society meeting. Miami: FL. Poster presentation; 2009, May 24–26.Google Scholar
  78. 78.
    Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW. In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med. 2009;37(Suppl 1):71S–80S.CrossRefPubMedGoogle Scholar
  79. 79.
    Lu Y, Dhanaraj S, Wang Z, et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res. 2006;24:1261–70.CrossRefPubMedGoogle Scholar
  80. 80.
    Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.CrossRefPubMedGoogle Scholar
  81. 81.
    International Cartilage Restoration Society. MR imaging results of particulated juvenile cartilage allograft for repair of chondral lesions in the knee. Montreal, CA: International Cartilage Restoration Society; 2012.Google Scholar
  82. 82.
    Ahmad CS, Cohen ZA, Levine WN, et al. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med. 2001;29:201–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Garretson R, Katolik L, Verma N, et al. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med. 2004;32:967–74.CrossRefPubMedGoogle Scholar
  84. 84.
    Hangody L, Kish G, Kárpáti Z, et al. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998;21:751–6.PubMedGoogle Scholar
  85. 85.
    Koh JL, Wirsing K, Lautenschlager E, et al. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med. 2004;32:317–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Huntley JS, Bush PG, McBirnie JM, et al. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am. 2005;87:351–60.CrossRefPubMedGoogle Scholar
  87. 87.
    International Cartilage Repair Society Meeting. SF-36 score and outcome for autologous chondrocyte implantation of the knee. Toronto, Canada: International Cartilage Repair Society Meeting; 2002.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.OrthoIndy Knee Preservation and Cartilage Restoration Center of IndianaIndianapolisUSA
  2. 2.Department of Orthopedic SurgeryHospital for Special SurgeryNew YorkUSA

Personalised recommendations