Nanobotany pp 175-193 | Cite as

Synthesis of Nanoparticles by Microbes

  • Arusa Aftab


Microorganisms are related to nanoworld. Nanoworld or nanotechnology describes the characteristics of particles with size ranging from 1–100 nm. Nanotechnology is the field of interest now for the scientist and they are applying it in each and every field of life like medicine, drug delivery, electronic, construction etc. They believe to be the future of the globe. There are a number of chemical and physical methods of nanoparticles synthesis but they are not considered to be cost effective on large scale. Moreover they add to the pollution of environment, thus making their use hazardous. But the use of biological method for the purpose is a better option. One of such method is use of microbe. This chapter includes the detail of some microbes, bacteria as well as fungi which are under research to develop nanoparticles of different metals and metal derivatives. This chapter also covers the main mechanism of the microbes involved in the biogenic synthesis of nanoparticles without causing any harm to the environment or system.


  1. Abou El-Nour MM, Eftaiha A, Al-Warthan A, Amma RAA (2010) Synthesis and application of silver nanoparticles. Arb J Chem 3(3):135–140CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI et al (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B 28(02):313–318CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824–828CrossRefGoogle Scholar
  4. Ahmad R, Minaeian S, Shahverdi HR et al (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923CrossRefGoogle Scholar
  5. Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009Google Scholar
  6. Arayanan PVB, Thangavelu D, Muthukumarasamy VK, Munusamy C, Gurunathan B (2013) Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus. Bull Mater Sci 36(7):1201–1205CrossRefGoogle Scholar
  7. Azam AZ, Davood F, Ali RM, Muhammad N et al (2009) Synthesis and characterization of gold nanoparticles by tryptophane. Am J App Sci 82(4):691–695Google Scholar
  8. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mat Lett 63(9–10):764–766CrossRefGoogle Scholar
  9. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacte rsphaeroides. Biotechnol Lett 28(14):1135–1139CrossRefPubMedGoogle Scholar
  10. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mat Chem 14(22):3303–3305CrossRefGoogle Scholar
  11. Bansal V, Rautaray D, Bharde A (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mat Chem 15(26):2583–2589CrossRefGoogle Scholar
  12. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963CrossRefPubMedGoogle Scholar
  13. Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Res Tech 27(5):389–401CrossRefGoogle Scholar
  14. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B 47(2):160–164CrossRefGoogle Scholar
  15. Borse V, Kaler A, Banerjee UC (2015) Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity. Int J Emerg Trends Elec Electron 11(2):65–73Google Scholar
  16. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications. Adv Drug Del Rev 60(3):299–327CrossRefGoogle Scholar
  17. Castro L, Blazquez ML, Munoz JA et al (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:1–18CrossRefGoogle Scholar
  18. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thernoaceticum. Appl Env Mic 59:7–14Google Scholar
  19. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefPubMedGoogle Scholar
  20. Dean JA (1979) Lange’s handbook of chemistry, 12th edn. McGraw-Hill Inc., New York, pp 6-2-6-19Google Scholar
  21. Deepak V, Kalishwaralal K, Ram S K P, Gurunathan S (2011) M. Rai and N. Duran (eds) Metal nanoparticles in microbiology, Springer, Berlin/Heidelberg 2011, doi: CrossRefGoogle Scholar
  22. Duran N, Priscyla D, Marcato PD, Alves O, De Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotech 3:1–7CrossRefGoogle Scholar
  23. Fan TX, Chow SK, Zhang D (2009) Biomorphic mineralization: from biology to materials. Progress Mat Sci 54(5):542–659CrossRefGoogle Scholar
  24. Fayaz AM, Balaji K, Girilal M, Yadav R et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotech Biol Med 6(1):103–109CrossRefGoogle Scholar
  25. Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Coll Surf B 74(1):191–195CrossRefGoogle Scholar
  26. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140CrossRefGoogle Scholar
  27. Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic, San DiegoGoogle Scholar
  28. Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide “Q-particle” by Klebsiella pneumoniae. Microbiology 143:2521–2530CrossRefPubMedGoogle Scholar
  29. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67(3–4):1003–1006CrossRefGoogle Scholar
  30. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Hindwai Pub Corp Int Sch Res Not 18:1–19CrossRefGoogle Scholar
  31. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641CrossRefPubMedGoogle Scholar
  32. Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Coll Surf B 75(1):330–334CrossRefGoogle Scholar
  33. Jha AK, Prasad K, Prasad K (2009a) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306CrossRefGoogle Scholar
  34. Jha AK, Prasad K, Kulkarni AR (2009b) Synthesis of TiO2 nanoparticles using microorganisms. Coll Surf B 71(2):226–229CrossRefGoogle Scholar
  35. Kalimuthu K, Babu RS, Venkataraman D, Mohd B, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll Surf B 65:150–153CrossRefGoogle Scholar
  36. Kalishwaralal K, Deepak V, Pandian SRK (2010) Biosynthesis of silver and gold nanoparticles using Brevi bacteriumcasei. Coll Surf B 77:257–262CrossRefGoogle Scholar
  37. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614CrossRefPubMedPubMedCentralGoogle Scholar
  38. Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29CrossRefGoogle Scholar
  39. Konishi Y, Ohno K, Saitoh N (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotech 128(3):648–653CrossRefGoogle Scholar
  40. Kumar BL, Gopal DVRS (2015) Effective role of indigenous microorganisms for sustainable environment. Biotech 5:867–876Google Scholar
  41. Kumar AS, Abyaneh MK, Sulabha SWG, Ahmad A, Khan MI (2007) Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  42. Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787CrossRefPubMedGoogle Scholar
  43. Lengke MF, Ravel B, Fleet BE et al (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Env Sci Tech 40(20):6304–6309CrossRefGoogle Scholar
  44. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443CrossRefPubMedGoogle Scholar
  45. Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. App Env Micro 64(11):4607–4609Google Scholar
  46. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mat 22(1):155–160CrossRefGoogle Scholar
  47. Magdi HM, Mourad MHE, AbdelAziz MM (2014) Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt J Exp Biol 10(1):1–12Google Scholar
  48. Mittal AK, Kaler A, Mulay AV, Bannergee UC (2013) Synthesis of gold nanoparticles using whole cells of Geotrichum candidum. J Nanopart 1(1):1–7CrossRefGoogle Scholar
  49. Mokhari N, Daneshpajouh S, Seedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small nanoparticles by culture supernatant of Klebsiella pneumoniae: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421CrossRefGoogle Scholar
  50. Mukherjee P, Ahmad A, Mandal D (2001a) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew and teChemie Int Ed 40(19):3585–3588CrossRefGoogle Scholar
  51. Mukherjee P, Ahmad A, Mandal D (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  52. Nanda A, Saravanan S (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456CrossRefPubMedGoogle Scholar
  53. Natarajan K, Elvaraj SS, Murty VR (2010) Microbial production of silver nanoparticle. Digest J Nanomat Biostr 5(1):135–140Google Scholar
  54. Panáček A, Kvítek L, Prucek R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phy Chem B 110(33):16248–16253CrossRefGoogle Scholar
  55. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotech 5:69–78CrossRefGoogle Scholar
  56. Pugazhenthiran N, Anandan S, Kathiravan G et al (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815CrossRefGoogle Scholar
  57. Rajeshkumar S, Malarkodi C, Paulkumar K et al (2013) Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci Nanotechnol 3(1):21–25Google Scholar
  58. Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enz Mic Tech 46:501–505CrossRefGoogle Scholar
  59. Saifuddin N, Wong CW, NurYasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6:61–70Google Scholar
  60. Senapati S, Mandal D, Ahmad A (2005a) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Phys A 78(1):101–105Google Scholar
  61. Senapati S, Ahmad A, Khan MI et al (2005b) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles particles. Small 1(5):517–520CrossRefPubMedGoogle Scholar
  62. Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Inven 3(8):28–38Google Scholar
  63. Sintubin L, De Windt W, Dick J, Mast J, Ha DV, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749CrossRefPubMedGoogle Scholar
  64. Stark AL (2010) Beneficial microorganisms: countering Microbephobia. CBE Life Sci Edu 9:387–389CrossRefGoogle Scholar
  65. Suresh AK, Pelletier DA, Wang W (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152CrossRefPubMedGoogle Scholar
  66. Sweeney RY, Mao C, Gao X (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559CrossRefPubMedGoogle Scholar
  67. Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075CrossRefGoogle Scholar
  68. Thomas R, Viswan A, Mathew J, Radhakrishnan EK (2012) Evaluation of antibacterial activity of silver nanoparticles synthesized by a novel strain of marine Pseudomonas sp. Nano Biomed Eng 4:139–143Google Scholar
  69. Velusamy P, Kumar GV, Jeyanthi V et al (2016) Inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP et al (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mat Lett 61(6):1413–1418CrossRefGoogle Scholar
  71. Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325CrossRefPubMedGoogle Scholar
  72. Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacterial 84:647–658Google Scholar
  73. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization. Nanoscale Res Lett 3(11):397–415CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Arusa Aftab
    • 1
  1. 1.Department of BotanyLahore College for Women UniversityLahorePakistan

Personalised recommendations