Nanobotany pp 83-102 | Cite as

Nano Drugs

  • Aneeqa Sabah
  • Gabour Loius Hornyak


Nanoparticles, nanostructures of variety of shapes, sizes and morphology are prominently being use for medical and disease diagnostics, element and impurity detection and monitoring of cells and tissues and in living beings. Recently, drug-delivery system based on nano-particle coating of drugs getting much attention and interest for the cure of cancer and heart diseases. The purpose is to increase the human health and safety from diseases by using novel nano-structures and devices. Number of drug-delivery systems like Oral, intranasal, parental and nano-networking etc. are discussed in detail. Detail view of synthesis techniques for different sizes, shapes and morphology of nano-architectures is described. These varieties of nano-structures and devices are specifically designed for delivering the drug in better and easy way to malfunctioning area in the human and living beings.


  1. Baranello MP, Bauer L, Benoit DS (2014) Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Biomacromolecules 15(7):2629–2641CrossRefPubMedGoogle Scholar
  2. Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A (2011) Nanomedicine: Application areas and development prospects. Int J Mol Sci 12(5):3303–3321CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boysen E of Hawk’s Perch Technical Writing, LLC and Copyright ©20072016 Hawk’s Perch Technical Writing, LLC-All Rights ReservedGoogle Scholar
  4. Bradbury J (2003) Nanoshell destruction of inoperable tumours. Lancet Oncol 4:711CrossRefPubMedGoogle Scholar
  5. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI) mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218CrossRefPubMedGoogle Scholar
  6. Brunetti FG, Herrero MA, Muñoz JM, Giordani S, Díaz-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato M, Vázquez E (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581CrossRefPubMedGoogle Scholar
  7. Carlmark A, Hawker C, Hult A, Malkoch M (2009) New methodologies in the construction of dendritic materials. Chem Soc Rev 38:352–362CrossRefPubMedGoogle Scholar
  8. Cho H, Kwon GS (2014) Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target 22:669–677CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cho H, Lai TC, Kwon GS (2013) Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: Evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Contr Release 166(1):1–9CrossRefGoogle Scholar
  10. Cho H, Lai TC, Tomoda K, Kwon GS (2014) Polymeric micelles for multi-drug delivery in cancer. AAPS Pharm Sci Tech 16:10–20CrossRefGoogle Scholar
  11. Darbre T, Reymond J (2006) Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc Chem Res 39(12):925–934CrossRefPubMedGoogle Scholar
  12. Deb KD, Griffith M, Muinck ED, Rafat M (2012) Nanotechnology in stem cells research: advances and applications. Front Biosci (Landmark Ed) 17:1747–1760CrossRefGoogle Scholar
  13. Dikmen G, Genç L, Güney G (2011) Advantage and disadvantage in drug delivery system. J Mater Sci Eng 5(4):468–472Google Scholar
  14. Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Delivery Rev 57:2177–2202CrossRefGoogle Scholar
  15. Edina CW, Andrew ZW (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6(1):9–26Google Scholar
  16. Emeje MO, Obidike IC, Akpabio EI, Ofoefule SI (2012) Nanotechnology in drug delivery. In: Sezer AD (ed) InTech, Rijeka, Croatia, pp 70–106Google Scholar
  17. Eskiler G G, Gökhan D, Lütfi G (2013) Nano-based drug delivery system, Intech. (2013):90–146.
  18. Estanqueiro M, Amaral MH, Conceiçao J, Lobo JMS (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B 126:631–648CrossRefGoogle Scholar
  19. Fukushima S, Varela-Carver A, Coppen S R, Yamahara K, Felkin L E, Lee J, Barton P J, Terracciano C M, Yacoub M H, Suzuki K (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation 115(17):2254–2261CrossRefPubMedGoogle Scholar
  20. Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–158CrossRefPubMedGoogle Scholar
  21. Güney G, Genç L, Dikmen G (2011) J Mater Sci Eng 5(5):577–582Google Scholar
  22. Gupta A, Arora A, Menakshi A, Sehgal A, Sehgal R (2012) nanotechnology and its applications in drug delivery: a review. Int J Med. Mol Med 3(1):1–9CrossRefGoogle Scholar
  23. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semın Ori 26:57–64CrossRefGoogle Scholar
  24. Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, Kabanov AV (2012) Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance. Mol Pharm 9:2302–2313CrossRefPubMedPubMedCentralGoogle Scholar
  25. Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Ros TD, Bano F, Casalis L, Scoles G, Prato M (2009) Synthesis and characterization of a carbon nanotube−dendron series for efficient siRNA delivery. J Am Chem Soc 131(28):9843–9848CrossRefPubMedGoogle Scholar
  26. Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2008) Introduction of nano science and nanotechnology. Chapter no: 9, Carob-based nanomaterials, December 22. CRC Press, Boca RatonCrossRefGoogle Scholar
  27. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H (2010) Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 20(3):228–243CrossRefPubMedGoogle Scholar
  28. Katayose S, Kataoka K (1998) Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly (ethylene glycol)—poly (L-lysine) block copolymer. J Pharm Sci 87:160–163CrossRefPubMedGoogle Scholar
  29. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307CrossRefGoogle Scholar
  30. Kozlov M, Melik-Nubarov N, Batrakova E, Kabanov A (2011) Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33:3305–3313CrossRefGoogle Scholar
  31. Krishnamurthy S, Ng VW, Gao S, Tan MH, Yang YY (2014) Phenformin-loaded polymeric micelles for targeting both cancer cells and cancer stem cells in vitro and in vivo. Biomaterials 35(33):9177–9186CrossRefPubMedGoogle Scholar
  32. Kumar R, Kulkarni A, Nagesha DK, Sridhar S (2012) In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2(7):714–722CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kutty RV, Feng SS (2013) Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 34(38):10160–10171CrossRefPubMedGoogle Scholar
  34. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H (2012) Preparation, Characterization and Applications of Liposomes: State of the Art. J Colloids Sci Biotechnol 1:147–168CrossRefGoogle Scholar
  35. Lee H, Soo PL, Liu J, Butler M, Allen C (2007) Polymeric micelles for formulation of anti-cancer drugs. In: Amiji MM (ed) CRC Press, New York, pp 318–355Google Scholar
  36. Lencioni R, Bartolozzi C (1996) Ethanol injection for the treatment of hepatic tumours. Eur Radiol 6(5):682–696PubMedPubMedCentralGoogle Scholar
  37. Lopes S C A, Giuberti C S, Rocha T G R, Ferreira D S, Leite E A, Oliveira M C (2013). Liposomes as carrier of anticancer drugs, L. Rangel (Ed.), Intech.Google Scholar
  38. Mader K, Mehnert W (2004). Solid lipid nanoparticles – concepts, procedures and physicochemical aspects, C. Nastruzzi (Ed.), CRC Press, Boca Rotan: 1–22.Google Scholar
  39. Makino K, Shibata A (2006). Surface properties of liposomes depending on their composition. In: Liu AL (ed) Elsevier, New York, pp 49–53Google Scholar
  40. Malik A, Chaudhary S, Garg G, Tomar A (2012) Dendrimers: a tool for drug delivery. Adv Biol Res 6(4):165–169Google Scholar
  41. Molina EJ, Palma J, Gupta D, Torres D, Gaughan JP, Houser S, Macha S, Thorac J (2008) Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy. Cardiovasc Surg 135:292–299Google Scholar
  42. Molina EJ, Palma J, Gupta D, Gaughan JP, Houser S, Macha M (2009) Right ventricular effects of intracoronary delivery of mesenchymal stem cells (MSC) in an animal model of pressure overload heart failure. Biomed Pharmacother 63:767–772CrossRefPubMedGoogle Scholar
  43. Mussi SV, Torchilin VP (2013) Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B 1:5201–5209CrossRefGoogle Scholar
  44. Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, Cho CS, Lee HC (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383(1–2):192–200CrossRefPubMedGoogle Scholar
  45. Nakamura K, Ryuichi E, Takeda M (1976) Surface properties of styrene – ethylene oxide block copolymers. J Polym Sci 14(7):1287–1295Google Scholar
  46. Nasibullah M, Hassan F, Ahmad N, Khan AR, Rahman M (2013) Dendrimers as novel polymeric material: a review on its synthesis, characterization and their applications. Adv Sci Focus 1(3):197–204CrossRefGoogle Scholar
  47. Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176CrossRefGoogle Scholar
  48. Patil J, Gurav P, Kulkarni R, Jadhav S, Mandave S, Shete S, Chipade V (2013) Applications of solid lipid nanoparticle in novel drug delivery system. Brit. Biomed Bull 1(2):103–118Google Scholar
  49. Ramandeep Singh MK (2016) Kale and Atul Bodkhe, Liposomes: from concept to commercialization. Euorpian J Biomed Pharm sci 3(7):189–206Google Scholar
  50. Ramasamy T, Kim J, Choi HG, Yong CS, Kim JOJ (2014) Novel dual drug-loaded block monomer complex micelles for enhancing the efficacy of chemotherapy treatments. Nanotechnology 10(7):1304–1312Google Scholar
  51. Sajomsang W, Gonil P, Saesoo S, Ruktanonchai UR, Srinuanchai W, Puttipipatkhachorn S (2014) Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Int J Pharm 477(1–2):261–272CrossRefPubMedGoogle Scholar
  52. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810–834CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sarisozen C, Vural I, Levchenko T, Hincal AA, Torchilin VP (2012) Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance. Drug Deliv 19(8):363–370CrossRefPubMedGoogle Scholar
  54. Satchi-Fainaro R, Duncan R, BarnesB C M (2006) Polymer therapeutics for cancer: current status and future challenges. In: Satchi-Fainaro R, Duncan R (eds) Springer, New York, pp 1–65Google Scholar
  55. Schwarz MA, Raith K, Neubert RHH (1998) Characterization of micelles by capillary electrophoresis. Electrophoresis 19:2145–2150CrossRefPubMedGoogle Scholar
  56. Shen Y, Pei A, Sun A, Xu J, Song Y, Huang G, Sun X, Zhang S, Qin Q, Zhu H, Yang S, Yang X, Zou Y, Qian J, Ge J (2013) Comparison of magnetic intensities for mesenchymal stem cell targeting therapy on ischemic myocardial repair: high magnetic intensity improves cell retention but has no additional functional benefit. Biomaterials 34:9905–9916CrossRefPubMedGoogle Scholar
  57. Shi S, Shi K, Tan L, Qu Y, Shen G, Chu B, Zhang S, Su X, Li X, Wei Y, Qian Z (2014) The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials 35(15):4536–4547CrossRefPubMedGoogle Scholar
  58. Singh SK, Sharma VK (2013) Dendrimers: A class of polymer in the nanotechnology for drug delivery. In: AK Mishra (ed), Scrivener Publishing, BeverlyCrossRefGoogle Scholar
  59. Sosnik A, Raskin MM (2015) Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 33(6):1380–1392CrossRefPubMedGoogle Scholar
  60. Sun CY, Ma YC, Cao ZY, Li DD, Fan F, Wang JX, Tao W, Yang XZ (2014) Effect of Hydrophobicity of Core on the Anticancer Efficiency of Micelles as Drug Delivery Carriers. ACS Appl Mater Interfaces 6(24):22709–22718CrossRefPubMedGoogle Scholar
  61. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Saurabh KB (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2(1):2–11CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tripathy S, Das MK (2013) Dendrimers and their applications as novel drug delivery carriers. J Appl Pharmaceut Sci 3(9):142–149Google Scholar
  63. Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70(2):95–111CrossRefPubMedGoogle Scholar
  64. Venkataraman S, Hedrick SL, Ong ZY, Yang C, Pui Lai Rachel Ee, Hammond PT, Yang YY (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63(14-15):1228–1246CrossRefPubMedGoogle Scholar
  65. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32:8281–8290CrossRefPubMedGoogle Scholar
  66. Weissig V, Whiteman KR, Torchilin VP (1998) Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous lewis lung carcinoma in mice. Pharm Res 15:1552–1556CrossRefPubMedGoogle Scholar
  67. Welch PM, Welch CF (2009) Tecto-dendrimers: a study of covalently bound nanospheres. Macromolecules 42:7571–7578CrossRefGoogle Scholar
  68. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivary systems. Pharmacol Rep 64:1020–1037CrossRefGoogle Scholar
  69. Xie X, Sun A, Zhu W, Huang Z, Hu X, Jia J, Zou Y, Ge J (2012) Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. Tohoku J Exp Med 226:29–36CrossRefPubMedGoogle Scholar
  70. Yhee J Y, Son S, Son S, Joo MK, Kwon IC (2013). The EPR effect in cancer therapy. In: Bae YH, Mrsny RJ, Park K (eds) Springer, New York, pp 621–632CrossRefGoogle Scholar
  71. Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7:145–158CrossRefPubMedGoogle Scholar
  72. Zhang X, Liu B, Yang Z, Li H, Luo X, Luo H, Gao D, Jiang Q, Liu J, Jiang Z (2014a) Micelles of enzymatically synthesized PEG-poly(amine-co-ester) block copolymers as pH-responsive nanocarriers for docetaxel delivery. Colloids Surf B 115:349–358CrossRefGoogle Scholar
  73. Zhang X, Zeng X, Liang X, Yang Y, Li X, Chen H, Huang L, Mei L, Feng S S (2014b) The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 35(33):9144–9154CrossRefPubMedGoogle Scholar
  74. Zharov V, Galitovsky V, Viegas M (2003) Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 83(24):4897–4899CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aneeqa Sabah
    • 1
  • Gabour Loius Hornyak
    • 2
  1. 1.Department of PhysicsLahore College for Women UniversityLahorePakistan
  2. 2.Asian Institute of TechnologyKhlong NuengThailand

Personalised recommendations