Nanobotany pp 17-36 | Cite as

Advanced Concept of Green Synthesis of Metallic Nanoparticles by Reducing Phytochemicals

  • Zubaida Yousaf
  • Nadia Saleh


In the past nanoparticles were produced by physical and chemical methods. There are many drawbacks of physical and chemical methods like use of toxic solvents, generation of hazardous by-products, and high energy consumption. Therefore, in recent years, researchers are more focused towards the development of efficient methods of green synthesis. Production of well-characterized nanoparticles by using various plants extract is more sustainable, eco-friendly and faster technique.Varying the size and morphology of the nanoparticles greatly influences its functional ability.Hence various applications of nanoparticle synthesis by green synthesis is possible.Scientists are using whole plant extracts or tissues for the bio reduction of nanoparticles like gold, silver, copper, zinc oxide, platinum, palladium and cobalt. Polyphenolic (Flavonoids, alkaloids, terpenoids, phenolic compounds) compounds of plants are generally considered as the best reducing agents. However the composition of these polyphenolic varies in different plant species.There is a need to devise a method in which optimized and controlled amount of phytochemicals may produce the desired product with a higher reproducibility rate, in lesser time and cost as well. It is predicted that quantification and isolation of phytochemicals, and tissue culture technique can be a useful technique to produce significantly dynamic particles. In the present chapter authors describe the role of different phytochemicals in bio reduction of metallic ions and list of medicinal and edible plants, effective against anti carcinogenic and antimicrobial activity. These plants can be a potential and active source of phytochemicals for the bio synthesis of nanoparticles.


Metallicnanoparticles Green synthesis Plant metabolites Quantification Reproducibility 


  1. Agbafor KN, Nwachukwu N (2011) Phytochemical analysis and antioxidant property of leaf extract of Vitex doniana and Mucuna pruriens. Bio Chem Res Int 2011:1–4Google Scholar
  2. Ahmad N, Sharma S, Alam MK et al (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81(1):81–86CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28CrossRefPubMedGoogle Scholar
  4. Ali-Shtayeh MS, Al-Nuri MA, Yaghmour RMR, Faidi YR (1997) Antimicrobial activity of Micromeria nervosa from the Palestinian area. J Ethnopharmacol 58(3):143–147CrossRefPubMedGoogle Scholar
  5. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Tox 46(2):446–475CrossRefGoogle Scholar
  6. Berkada B (1978) Preliminary report on warfarin for the treatment of herpes simplex. J Irish Coll Phys Surg 22:56Google Scholar
  7. Bose PK (1958) On some biochemical properties of natural coumarins. J Ind Chem Soc 58:367–375Google Scholar
  8. Burdick EM (1971) Carpaine: an alkaloid of Carica papaya—its chemistry and pharmacology. Eco Bot 25(4):363–365CrossRefGoogle Scholar
  9. Cichewicz RH, Thorpe PA (1996) The antimicrobial properties of chile peppers (Capsicum species) and their uses in Mayan medicine. J Ethnopharmacol 52(2):61–70CrossRefPubMedGoogle Scholar
  10. Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7(2):66–76CrossRefGoogle Scholar
  11. Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356CrossRefPubMedGoogle Scholar
  12. Da Silva EC, Da Silva MGA, Meneghetti SMP et al (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopar Res 10(1):201–208CrossRefGoogle Scholar
  13. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 7:1189–1202CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dawson NG (2008) Sweating the small stuff: environmental risk and nanotechnology. BioSci 58(8):690–690CrossRefGoogle Scholar
  15. Dekker M, Verkerk R (2003) Dealing with variability in food production chains: a tool to enhance the sensitivity of epidemiological studies on phytochemicals. Eur J Nut 42(1):67–72CrossRefGoogle Scholar
  16. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Coll Surf A Physicochem Eng Aspects 369(1):27–33CrossRefGoogle Scholar
  17. Elumalai EK, Prasad TNVK, Nagajyothi PC, David E (2011) A bird’s eye view of biogenic silver nanoparticles and their applications. Pelagia Res Lib 2:88–97Google Scholar
  18. Gardea-Torresdey JL, Tiemann KJ, Gamez G et al (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1(3):397–404CrossRefGoogle Scholar
  19. Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K et al (2000) Reduction and accumulation of gold (III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Env Sci Tech 34(20):4392–4396CrossRefGoogle Scholar
  20. Gardea-Torresdey JL, Parsons JG, Gomez E et al (2002a) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  21. Gardea-Torresdey JL, Tiemann KJ, Parsons JG et al (2002b) Characterization of trace level Au (III) binding to alfalfa biomass (Medicago sativa) by GFAAS. Adv Env Res 6(3):313–323CrossRefGoogle Scholar
  22. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361CrossRefGoogle Scholar
  23. Gengan RM, Anand K, Phulukdaree A, Chuturgoon A (2013) A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Coll Surf B Biointerfaces 105:87–91CrossRefGoogle Scholar
  24. Ghoshal S, Prasad BK, Lakshmi V (1996) Antiamoebic activity of Piper longum fruits against Entamoeba histolytica in vitro and in vivo. J Ethnophorm 50(3):167–170CrossRefGoogle Scholar
  25. Glusker JP, Katz A, Bock CW, Rigaku J (1999) Metal ions in biological systems. Glusker Jenny P 6:8–16Google Scholar
  26. Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3(1):394–399Google Scholar
  27. Hamburger M, Hostettmann K (1991) Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry 30(12):3864–3874CrossRefGoogle Scholar
  28. Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agr Food Chem 39(2):418–421CrossRefGoogle Scholar
  29. Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opi Biotech 19(2):73–82CrossRefGoogle Scholar
  30. Hu ML (2011) Dietary polyphenols as antioxidants and anticanceragents: more questions than answers. Chang Gung Med J 34(5):449–460PubMedPubMedCentralGoogle Scholar
  31. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):1–24CrossRefGoogle Scholar
  32. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  33. Jacob SJP, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Coll Surf B Biointerfaces 91:212–214CrossRefGoogle Scholar
  34. Jha AK, Prasad K, Kumar V, Prasad K (2009) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotech Prog 25(5):1476–1479CrossRefGoogle Scholar
  35. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89CrossRefGoogle Scholar
  36. Johnson IT (2007) Phytochemicals and cancer. Proceed Nut Soc 66(02):207–215CrossRefGoogle Scholar
  37. Jones SB Jr, Luchsinger AE (1986) Plant systematics. McGraw-Hill Book Co, New YorkGoogle Scholar
  38. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085CrossRefGoogle Scholar
  39. Katti K, Chanda N, Shukla R et al (2009) Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotech: Biomed 1(1):B39–B52Google Scholar
  40. Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Coll Interface Sci 234:132–141Google Scholar
  41. Kim J, Rheem Y, Yoo B, Chong Y et al (2010) Peptide-mediated shape-and size-tunable synthesis of gold nanostructures. Acta Biomater 6(7):2681–2689CrossRefPubMedGoogle Scholar
  42. Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10CrossRefPubMedGoogle Scholar
  43. Kumari M M, Philip D (2013) Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil. Spectrochimica Acta Part A Mol Biomol Spect 111:154–160Google Scholar
  44. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat 8:1–16Google Scholar
  45. Lisar SYS, Motafakkerazad R, Hossain MM (2012) Water stress in plants: causes, effects and responses, Water Stress, Prof. Ismail Md. Mofizur Rahman (Ed.), ISBN: 978-953-307-963-9, InTechGoogle Scholar
  46. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Coll Interface Sci 353(2):433–444CrossRefGoogle Scholar
  47. Makarov VV, Love AJ, Sinitsyna OV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):20Google Scholar
  48. Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. J Chem Sci 114(5):513–520CrossRefGoogle Scholar
  49. Martinez MJ, Betancourt J, Alonso-Gonzalez N, Jauregui A (1996) Screening of some Cuban medicinal plants for antimicrobial activity. J Ethnopharmacol 52(3):171–174CrossRefPubMedGoogle Scholar
  50. Mathur M (2014) Properties of phtyo-reducing agents utilize for production of nano-particles, existing knowledge and gaps. Int J Pure App Biosci 2(2):113–130Google Scholar
  51. Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444(7117):267–269CrossRefPubMedGoogle Scholar
  52. McDevitt JT, Schneider DM, Katiyar SK, Edlind TD (1996) Berberine: a candidate for the treatment of diarrhea in AIDS patients, abstr. 175. In: Program and abstracts of the 36th interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, Washington, DCGoogle Scholar
  53. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356CrossRefPubMedGoogle Scholar
  54. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  55. Mubarak AD, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Coll Surf B: Biointerfaces 85(2):360–365CrossRefGoogle Scholar
  56. Mukunthan KS, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotech 4(2):71–79CrossRefGoogle Scholar
  57. Murray MT (1998) Quercitin: nature’s antihistamine. Better Nutr 60(4):10Google Scholar
  58. Navarro V, Villarreal ML, Rojas G, Lozoya X (1996) Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol 53(3):143–147CrossRefPubMedGoogle Scholar
  59. Nishino H, Satomi Y, Tokuda H, Masuda M (2007) Cancer control by phytochemicals. Curr Pharm Des 13(33):3394–3399CrossRefPubMedGoogle Scholar
  60. Njagi EC, Huang H, Stafford L et al (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271CrossRefPubMedGoogle Scholar
  61. Ofek I, Goldhar J, Sharon N (1996) Anti-Escherichia coli adhesin activity of cranberry and blueberry juices. In: Toward anti-adhesion therapy for microbial diseases. Springer US, Boston, pp 179–183CrossRefGoogle Scholar
  62. Omulokoli E, Khan B, Chhabra SC (1997) Antiplasmodial activity of four Kenyan medicinal plants. J Ethnopharmacol 56(2):133–137CrossRefPubMedGoogle Scholar
  63. Osato JA, Santiago LA, Remo GM, Cuadra MS, Mori A (1993) Antimicrobial and antioxidant activities of unripe papaya. Life Sci 53(17):1383–1389CrossRefPubMedGoogle Scholar
  64. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotech 5(3):69–78CrossRefGoogle Scholar
  65. Peteros NP, Uy MM (2010) Antioxidant and cytotoxic activities and phytochemical screening of four Philippine medicinal plants. J Med Plants Res 4(5):407–414Google Scholar
  66. Raghunandan D, Bedre MD, Basavaraja S et al (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Coll Surfaces B Biointerfaces 79(1):235–240CrossRefGoogle Scholar
  67. Rana BK, Singh UP, Taneja V (1997) Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. J Ethnopharmacol 57(1):29–34CrossRefPubMedGoogle Scholar
  68. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20(2):101–153CrossRefGoogle Scholar
  69. Rejeski D, Lekas D (2008) Nanotechnology field observations: scouting the new industrial west. J Clean Prod 16(8):1014–1017CrossRefGoogle Scholar
  70. Roy N, Barik A (2010) Green synthesis of silver nanoparticles from the unexploited weed resources. Int J Nanotech Appl 4(2):95–101Google Scholar
  71. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Reg 34(1):3–21CrossRefGoogle Scholar
  72. Satrija F, Nansen P, Murtini S, He S (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48(3):161–164CrossRefPubMedGoogle Scholar
  73. Scheel LD (2016) The biological action of the coumarins. Microb Tox 8:47–66Google Scholar
  74. Sheny DS, Mathew J, Philip D (2012) Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale. Spectrochimica Acta Part A Mol Biomol Spectrosc 97:306–310CrossRefGoogle Scholar
  75. Shiv Shankar S, Ahmad A, Pasricha R (2003) Sastry M. J Mater Chem 13:1822–1846CrossRefGoogle Scholar
  76. Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem A Eur J 13(11):3160–3168CrossRefGoogle Scholar
  77. Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H (2015) Resveratrol nanoformulation for cancer prevention and therapy. Annals NY Acad Sci 1348(1):20–31CrossRefGoogle Scholar
  78. Sies H, Stahl W, Sundquist AR (1992) Antioxidant functions of vitamins. Ann NY Acad Sci 669(1):7–20CrossRefPubMedGoogle Scholar
  79. Silva LP, Reis IG, Bonatto CC (2015) Green synthesis of metal nanoparticles by plants: current trends and challeges. In: Vladimir AB, Elena VB (eds) Green processes for nanotechnology from inorganic to bioinspired nanomaterials. Springer, Cham, pp 259–275Google Scholar
  80. Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopar Res 12(5):1667–1675CrossRefGoogle Scholar
  81. Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A Mol Biomol Spec 74(3):735–739CrossRefGoogle Scholar
  82. Stephen A, Seethalakshmi S (2013) Phytochemical synthesis and preliminary characterization of silver nanoparticles using hesperidin. J Nanosci 2013(6):1–6CrossRefGoogle Scholar
  83. Tan YN, Lee JY, Wang DI (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Amr Chem Soc 132(16):5677–5686CrossRefGoogle Scholar
  84. Vasanthi P, Ganapathy M, Evanjelene VK et al (2014) Phytochemical screening and antioxidant activity of extracts of the leaf and bark of Albizzia lebbeck (Benth). Acad J Med Plant 2:026–031Google Scholar
  85. Verpoorte R, Van der Heijden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21(6):467–479CrossRefGoogle Scholar
  86. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240CrossRefGoogle Scholar
  87. Vilas V, Philip D, Mathew J (2014) Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochimica Acta Part A Mol Biomol Spect 132:743–750CrossRefGoogle Scholar
  88. Wan J, Wilcock A, Coventry MJ (1998) The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. J Appl Microbiol 84(2):152–158CrossRefPubMedGoogle Scholar
  89. Wang WX, Vinocur B, Shoseyov O, Altman A (2000) Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. In IV international symposium on in vitro culture and horticultural breeding 560:285–292Google Scholar
  90. Wild R (1994) The complete book of natural and medicinal cures. Rodale Press, Inc, Emmaus, pp 50–56Google Scholar
  91. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape controlled synthesis of metal nanostructures: the case of silver. Chem A Eur J 11(2):454–463CrossRefGoogle Scholar
  92. Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW, Mahdi MA (2011) Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine 6:71CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zayed MF, Eisa WH, Shabaka AA (2012) Spectrochim. Acta A Mol Biomol Spectrosc 98:423–428CrossRefGoogle Scholar
  94. Zwenger S (2008) Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 3(1):1–7Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zubaida Yousaf
    • 1
  • Nadia Saleh
    • 1
  1. 1.Department of BotanyLahore College for Women UniversityLahorePakistan

Personalised recommendations