Nanobotany pp 235-246 | Cite as

Future Prospects of Nanobotany

  • Sumera Javad
  • Madeeha Ansari
  • Iqra Akhtar


Nanoparticles synthesized from plant materials or plant products have a bright future ahead. This chapter covers a brief overview of the progress going on in nanotechnology, its future applications or expectations. There are different industries which hope to revolutionalize by the practical introduction of nanotechnology. Fields of science like medicine, health, robostics, food sciences, agriculture, all are supposed to be highly influenced by nanotechnology in a few upcoming years. A real research is needed to overcome all the flaws and drawbacks.


  1. Abbas KA, Saleh AM, Mohamed A, Mohdazhan N (2009) The recent advances in the nanotechnology and its applications in food processing: a review. J Food Ag Env 7(3–4):14–17Google Scholar
  2. Abhilash P, Singh N (2009) Pesticide use and application: an Indian scenario. J Haz Mat 165(1):1–12CrossRefGoogle Scholar
  3. Alfadul S, Elneshwy A (2010) Use of nanotechnology in food processing, packaging and safety–review. Afr J Food Agr Nut Develop 10(6)Google Scholar
  4. Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163CrossRefPubMedGoogle Scholar
  5. Arafa MD, Defazio C, De Miguel Y, Porro A, Bartos P (2006) Nano-composite coatings for transportation infrastructures: demonstration projects. In: NICOM 2: 2nd international symposium on nanotechnology in construction, 2006. RILEM Publications SARL, pp 363–371Google Scholar
  6. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474CrossRefGoogle Scholar
  7. Balaguru P (2005) Nanotechnology and concrete: background, opportunities and challenges. In: Applications of nanotechnology in concrete design: proceedings of the international conference held at the University of Dundee, Scotland, UK. Thomas Telford Publishing, pp 113–122CrossRefGoogle Scholar
  8. Bigley C, Greenwood P (2003) Using silica to control bleed and segregation in self-compacting concrete. Concrete 37(2):43–45Google Scholar
  9. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612CrossRefGoogle Scholar
  10. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1(4):224–227CrossRefGoogle Scholar
  11. Campos EVR, De Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6(4):373–387CrossRefGoogle Scholar
  12. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contamin 25(3):241–258CrossRefGoogle Scholar
  13. Chellaram C, Murugaboopathi G, John A, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Procedia 8:109–113CrossRefGoogle Scholar
  14. Christian OP, Prem SB (2017) Nanofertilizers: new products for the industry. J Agric Food Chem.
  15. Davis S (1997) Biomedical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotech 15(6):217–224CrossRefGoogle Scholar
  16. De Oliveira JL, Campos EVR, Bakshi M, Abhilash P, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotech Adv 32(8):1550–1561CrossRefGoogle Scholar
  17. Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotech 5(2):91–91CrossRefGoogle Scholar
  18. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1CrossRefGoogle Scholar
  19. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14(9):1–15CrossRefGoogle Scholar
  20. Dingman J, Rehs D (2008) Nanotechnology: its impact on food safety. J Env Health 70(6):47–50Google Scholar
  21. Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J (2003) Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Targ 11(8–10):495–507CrossRefGoogle Scholar
  22. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation, Wiley, New YorkGoogle Scholar
  23. El-Shabouri M (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249(1):101–108CrossRefPubMedCentralPubMedGoogle Scholar
  24. Ewert K, Evans HM, Ahmad A, Slack NL, Lin AJ, Martin-Herranz A, Safinya CR (2005) Lipoplex structures and their distinct cellular pathways. Adv Genetics 53:119–155Google Scholar
  25. Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147):752–758CrossRefPubMedCentralPubMedGoogle Scholar
  26. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech Adv 29(6):792–803CrossRefGoogle Scholar
  27. Giraldo JP, Landry MP, Faltermeier SM, Mcnicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mat 13(4):400–408CrossRefGoogle Scholar
  28. Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Phil Trans R Soc B 369(1639):20120273CrossRefPubMedCentralPubMedGoogle Scholar
  29. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agr Food Chem 60(39):9781–9792CrossRefGoogle Scholar
  30. González JOW, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138CrossRefGoogle Scholar
  31. Guccione S, Li KC, Bednarski MD (2004) Vascular-targeted nanoparticles for molecular imaging and therapy. Meth Enz 386:219–236CrossRefGoogle Scholar
  32. Hart SL (2005) Lipid carriers for gene therapy. Curr Drug Del 2(4):423–428CrossRefGoogle Scholar
  33. Hu L, Tang X, Cui F (2004) Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 56(12):1527–1535CrossRefPubMedCentralPubMedGoogle Scholar
  34. Juhel G, Batisse E, Hugues Q, Daly D, Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aqua Toxicol 105(3):328–336CrossRefGoogle Scholar
  35. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Env Int 63:224–235CrossRefGoogle Scholar
  36. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Env Sci Tech 43(16):1823–1867CrossRefGoogle Scholar
  37. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123CrossRefPubMedGoogle Scholar
  38. Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341(6147):759–765CrossRefPubMedCentralPubMedGoogle Scholar
  39. Konwarh R, Gogoi B, Philip R, Laskar M, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Coll Surf B Biointerf 84(2):338–345CrossRefGoogle Scholar
  40. Köping-Höggård M, Sánchez A, Alonso MJ (2005) Nanoparticles as carriers for nasal vaccine delivery. Exp Rev Vacc 4(2):185–196CrossRefGoogle Scholar
  41. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Tech Biotech 84(2):151–157CrossRefGoogle Scholar
  42. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona Squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochimica Acta Part A Mol Biomol Spec 90:173–176CrossRefGoogle Scholar
  43. Lavan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1(1):77–84CrossRefPubMedCentralPubMedGoogle Scholar
  44. Li G (2004) Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement Concrete Res 34(6):1043–1049CrossRefGoogle Scholar
  45. Lovely D, Phillips EJ, Lonergan DJ (1991) Enzymatic versus nonenzymatic mechanisms for Fe (III) reduction in aquatic sediments. Env Sci Tech 25(6)Google Scholar
  46. Lutsiak MC, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly (D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19(10):1480–1487CrossRefPubMedCentralPubMedGoogle Scholar
  47. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  48. Mcclung CR (2014) Making hunger yield. Sci 344(6185):699–700CrossRefGoogle Scholar
  49. Morla S, Ramachandra RCSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Bio Phys Sci B 1:328–334Google Scholar
  50. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  51. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Rev 55(3):329–347CrossRefGoogle Scholar
  52. Rana AK, Rana SB, Kumari A, Kiran V (2009) Significance of nanotechnology in construction engineering. Int J Recent Trends Eng 1(4):46–48Google Scholar
  53. Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mat Sci Eng 2015Google Scholar
  54. Requicha AA (2003) Nanorobots, NEMS, and nanoassembly. Proceedings IEEE 91(11):1922–1933CrossRefGoogle Scholar
  55. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. Insecticides design using advanced technologies. Springer, BerlinGoogle Scholar
  56. Sastry K, Rashmi H, Rao N (2010) Nanotechnology patents as R&D indicators for disease management strategies in agriculture. J Intellectual Property Rights 15:197–205Google Scholar
  57. Schurig D, Mock J, Justice B, Cummer SA, Pendry JB, Starr A, Smith D (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980CrossRefPubMedCentralPubMedGoogle Scholar
  58. Schurig D, Pendry J, Smith D (2007) Transformation-designed optical elements. Opt Express 15(22):14772–14782CrossRefPubMedCentralPubMedGoogle Scholar
  59. Sekhon BS (2010) Food nanotechnology–an overview. Nanotech Sci Appl 3(1):1–15Google Scholar
  60. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of au, ag, and bimetallic au core–ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Coll Interf Sci 275(2):496–502CrossRefGoogle Scholar
  61. Shellhart WC, Oesterle LJ (1999) Uprighting molars without extrusion. The J Am Dental Assoc 130(3):381–385CrossRefGoogle Scholar
  62. Shi H, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 398(6728):593–597CrossRefPubMedCentralPubMedGoogle Scholar
  63. Stephenson GR (2003) Pesticide use and world food production: risks and benefits. ACS Publications, Washington, DCGoogle Scholar
  64. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2(5):295–300CrossRefGoogle Scholar
  65. Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M, Rothuizen H, Stutz R (2002) The “millipede”-nanotechnology entering data storage. IEEE Trans Nanotech 99(1):39–55CrossRefGoogle Scholar
  66. West JL, Halas NJ (2000) Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotech 11(2):215–217CrossRefPubMedCentralPubMedGoogle Scholar
  67. Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G (2006) Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 26(3):435–441CrossRefPubMedCentralPubMedGoogle Scholar
  68. Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. The J Pathol 208(2):299–318CrossRefPubMedCentralPubMedGoogle Scholar
  69. Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2003) Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 9:465–472PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sumera Javad
    • 1
  • Madeeha Ansari
    • 1
  • Iqra Akhtar
    • 1
  1. 1.Department of BotanyLahore College for Women UniversityLahorePakistan

Personalised recommendations