Adaptation of Sentiment Analysis Techniques to Persian Language

  • Kia Dashtipour
  • Amir Hussain
  • Alexander Gelbukh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10762)


In the recent years, people all around the world share their opinions about different fields with each other over Internet. Sentiment analysis techniques have been introduced to classify these rich data based on the polarity of the opinion. Sentiment analysis research has been growing rapidly; however, most of the research papers are focused on English. In this paper, we review English-based sentiment analysis approaches and discuss what adaption these approaches require to become applicable to the Persian language. The results show that approaches initially suggested for English language are competitive with those developed specifically for Persian sentiment analysis.


  1. Adeel, A., et al.: A survey on the role of wireless sensor networks and IoT in disaster management. In: Durrani, T., Wang, W., Forbes, S. (eds.) Geological Disaster Monitoring Based on Sensor Networks, pp. 57–66. Springer Natural Hazards. Springer, Singapore (2019). Scholar
  2. Balahur, A., et al.: Sentiment analysis in the news. ArXiv Prepr. ArXiv:13096202, pp. 2216–2220 (2013)Google Scholar
  3. Basiri, M.E., Naghsh-Nilchi, A.R., Ghassem-Aghaee, N.: A framework for sentiment analysis in Persian. Open Trans. Inf. Process. 1, 14–18 (2014)Google Scholar
  4. Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)CrossRefGoogle Scholar
  5. Cambria, E., Havasi, C., Hussain, A.: SenticNet 2: a semantic and affective resource for opinion mining and sentiment analysis. In: FLAIRS Conference, pp. 202–207 (2012)Google Scholar
  6. Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 148–152. AAAI Press (2014)Google Scholar
  7. Cambria, E., Poria, S., Gelbukh, A., Kwok, K.: Sentic API. A common-sense based api for concept-level sentiment analysis. In: 4th Workshop on Making Sense of Microposts (#Microposts2014), co-located with the 23rd International World Wide Web Conference (WWW 2014). CEUR Workshop Proceedings, vol. 1141, pp. 19–24 (2014)Google Scholar
  8. Cambria, E., Poria, S., Gelbukh, A., Thelwall, M.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)CrossRefGoogle Scholar
  9. Chikersal, P., Poria, S., Cambria, E., Gelbukh, A., Siong, C.E.: Modelling public sentiment in Twitter: using linguistic patterns to enhance supervised learning. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 49–65. Springer, Cham (2015). Scholar
  10. Dashtipour, K., Hussain, A., Zhou, Q., Gelbukh, A., Hawalah, A.Y.A., Cambria, E.: PerSent: a freely available Persian sentiment lexicon. In: Liu, C.-L., Hussain, A., Luo, B., Tan, K.C., Zeng, Y., Zhang, Z. (eds.) BICS 2016. LNCS (LNAI), vol. 10023, pp. 310–320. Springer, Cham (2016a). Scholar
  11. Dashtipour, K., et al.: Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn. Comput. 8(4), 757–771 (2016b)CrossRefGoogle Scholar
  12. Dashtipour, K., Gogate, M., Adeel, A., Hussain, A., Alqarafi, A., Durrani, T.: A comparative study of persian sentiment analysis based on different feature combinations. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 2288–2294. Springer, Singapore (2017a). Scholar
  13. Dashtipour, K., Gogate, M., Adeel, A., Algarafi, A., Howard, N., Hussain, A.: Persian named entity recognition. In: 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 79–83. IEEE (2017b)Google Scholar
  14. Dashtipour, K., Gogate, M., Adeel, A., Ieracitano, C., Larijani, H., Hussain, A.: Exploiting deep learning for persian sentiment analysis. arXiv preprint arXiv:1808.05077 (2018)
  15. Ghassemzadeh, H., Mojtabai, R., Karamghadiri, N., Ebrahimkhani, N.: Psychometric properties of a Persian-language version of the beck depression inventory-second edition: BDI-II-PERSIAN. Depress. Anxiety 21(4), 185–192 (2005)CrossRefGoogle Scholar
  16. Gholamain, M., Geva, E.: Orthographic and cognitive factors in the concurrent development of basic reading skills in English and Persian. Lang. Learn. 49(2), 183–217 (1999)CrossRefGoogle Scholar
  17. Ghosh, S., Ghosh, S., Das, D.: Part-of-speech tagging of code-mixed social media text. EMNLP 2016, 90–98 (2016)Google Scholar
  18. Haddi, E., Liu, X., Shi, Y.: The role of text pre-processing in sentiment analysis. Procedia Comput. Sci. 17, 26–32 (2013)CrossRefGoogle Scholar
  19. Khallash, M., Hadian, A., Minaei-Bidgoli, B.: An empirical study on the effect of morphological and lexical features in Persian dependency parsing. In: 4th Workshop on Statistical Parsing of Morphologically Rich Languages, pp. 97–101 (2013)Google Scholar
  20. Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the bad and the omg! Icwsm 11(3), 538–541 (2011)Google Scholar
  21. Kumar, A., Sebastian, T.M.: Sentiment analysis: a perspective on its past, present and future. Int. J. Intell. Syst. Appl. IJISA 4, 1 (2012)Google Scholar
  22. Li, S., Huang, C.-R., Zhou, G., Lee, S.Y.M.: Employing personal/impersonal views in supervised and semi-supervised sentiment classification. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, pp. 414–423 (2010)Google Scholar
  23. Liu, B.: Opinion mining and sentiment analysis. In: Web Data Mining. pp. 459–526. Springer (2011)Google Scholar
  24. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Mining Text Data, pp. 415–463. Springer (2012)Google Scholar
  25. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)CrossRefGoogle Scholar
  26. Martineau, J., Finin, T.: Delta TFIDF: an improved feature space for sentiment analysis. ICWSM 9, 106–111 (2009)Google Scholar
  27. Musto, C., Semeraro, G., Polignano, M.: A comparison of Lexicon-based approaches for Sentiment Analysis of microblog posts. Inf. Filter. Retr. p. 59 (2014)Google Scholar
  28. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 128–135 (2008)CrossRefGoogle Scholar
  29. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10. Association for Computational Linguistics, pp. 79–86 (2002)Google Scholar
  30. Pérez-Rosas, V., Mihalcea, R.: Sentiment analysis of online spoken reviews. In: Inter-Speech, pp. 862–866 (2013)Google Scholar
  31. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)CrossRefGoogle Scholar
  32. Poria, S., Cambria, E., Ku, L.W., Gui, C., Gelbukh, A.: A rule-based approach to aspect extraction from product reviews. In: 2nd Workshop on Natural Language Processing for Social Media (SocialNLP), pp. 28–37 (2014)Google Scholar
  33. Poria, S., Ofek, N., Gelbukh, A., Hussain, A., Rokach, L.: Dependency tree-based rules for concept-level aspect-based sentiment analysis. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 41–47. Springer, Cham (2014). Scholar
  34. Priyanka, C., Gupta, D.: Identifying the best feature combination for sentiment analysis of customer reviews, In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 102–108. IEEE (2013)Google Scholar
  35. Rahate, R.S., Emmanuel, M.: Feature selection for sentiment analysis by using SVM. Int. J. Comput. Appl. 84, 24–32 (2013)Google Scholar
  36. Raina, P.: Sentiment analysis in news articles using sentic computing. In: 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW), pp. 959–962. IEEE (2013)Google Scholar
  37. Savoy, J.: Light stemming approaches for the French, Portuguese, German and Hungarian languages. In: Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 103–113. ACM (2006)Google Scholar
  38. Singh, V.K., Piryani, R., Uddin, A., Waila, P.: Sentiment analysis of movie reviews and blog posts. In: 2013 IEEE 3rd International Advance Computing Conference (IACC), pp. 893–898. IEEE (2013)Google Scholar
  39. Sharifloo, A.A., Shamsfard, M.: A bottom up approach to Persian stemming. In: IJCNLP, pp. 583–588 (2008)Google Scholar
  40. Shukla, H., Kakkar, M.: Keyword extraction from educational video transcripts using NLP techniques. In: 2016 6th International Conference Cloud System and Big Data Engineering (Confluence), pp. 105–108. IEEE (2016)Google Scholar
  41. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT Conference on Empirical methods in Natural Language Processing and Very Large Corpora: Held in Conjunction with the 38th Annual Meeting of the Association for Computational Linguistics, vol. 13, pp. 63–70 (2000)Google Scholar
  42. Tanawongsuwan, P.: Product review sentiment classification using part-of-speech. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), pp. 424–427. IEEE (2010)Google Scholar
  43. Vaziripour, E., Giraud-Carrier, C., Zappala, D.: Analyzing the political sentiment of Tweets in Farsi. In: 10th International AAAI Conference on Web and Social Media, pp. 669–702 (2016)Google Scholar
  44. Windfuhr, G., Perry, J.R.: Persian and Tajik. The Iranian Languages, pp. 416–544 (2009)Google Scholar
  45. Xu, Y., Jones, G.J., Li, J., Wang, B., Sun, C.: A study on mutual information-based feature selection for text categorization. J. Comput. Inf. Syst. 3, 1007–1012 (2007)Google Scholar
  46. Zhai, Z., Xu, H., Jia, P.: An empirical study of unsupervised sentiment classification of Chinese reviews. Tsinghua Sci. Technol. 15, 702–708 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kia Dashtipour
    • 1
  • Amir Hussain
    • 1
  • Alexander Gelbukh
    • 2
  1. 1.Department of Computing Science and MathematicsUniversity of StirlingStirlingScotland, UK
  2. 2.CIC, Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations