A Classifier Evaluation for Payments’ Default Predictions in a Brazilian Retail Company

  • Strauss Carvalho Cunha
  • Emanuel Mineda Carneiro
  • Lineu Fernando Stege MialaretEmail author
  • Luiz Alberto Vieira Dias
  • Adilson Marques da Cunha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)


This article presents an investigation about the performance of classification algorithms used for predicting payments’ default. Classifiers used for modelling the data set include: Logistic Regression; Naive-Bayes; Decision Trees; Support Vector Machine; k-Nearest Neighbors; Random Forests; and Artificial Neural Networks. These classifiers were applied to both balanced and original data using the Weka data mining tool. Results from experiments revealed that Logistics Regression and Naive Bayes classifiers had the best performance for the chosen data set.


Data mining Classifier algorithms Area under curve Logistic regression 



The authors would like to thank: (1) the Brazilian Aeronautics Institute of Technology (ITA); (2) the Casimiro Montenegro Filho Foundation (FCMF); the Software Engineering Research Group (GPES) members; and the 2RP Net Enterprise for their infrastructure, data set, assistance, advice, and financial support for this work.


  1. 1.
    V. García, A.I. Marqués, J.S. Sánchez, An insight into the experimental design for credit risk and corporate bankruptcy prediction systems. J. Intell. Inf. Syst. 44(1), 159–189 (2015)Google Scholar
  2. 2.
    J. Abellán, J.G. Castellano, A comparative study on base classifiers in ensemble methods for credit scoring. Expert. Syst. Appl. 73, 1–10 (2017)Google Scholar
  3. 3.
    K. Kennedy, Credit scoring using machine learning, Doctoral thesis, Dublin Institute of Technology, 2013Google Scholar
  4. 4.
    F. Louzada, A. Ara, G. Fernandes, Classification methods applied to credit scoring: a systematic review and overall comparison. Surv. Oper. Res. Manag. Sci. 21(2), 117–134 (2016)MathSciNetGoogle Scholar
  5. 5.
    M.C. Aniceto, Estudo comparativo entre técnicas de aprendizado de máquina para estimação de risco de crédito, Dissertação (Mestrado em Administração), Universidade de Brasília, Brasília, Brazil, 2016Google Scholar
  6. 6.
    A. Hooman, G. Marthandan, W.F.W. Yusoff, M. Omid, S. Karamizadeh, Statistical and data mining methods in credit scoring. J. Dev. Areas 50(5), 371–381 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Riasi, D. Wang. Comparing the performance of different data mining techniques in evaluating loan applications. Int. Bus. Res. 9(7), 164–187 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Lessmann, B. Baesens, H.-V. Seow, L.C. Thomas, Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur. J. Oper. Res. 247(1), 124–136 (2015)CrossRefGoogle Scholar
  9. 9.
    I. Brown, C. Mues, An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert. Syst. Appl. 39, 3446–3453 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Lin, Y. Hu, C. Tsai, Machine learning in financial crisis prediction: a survey. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42(4), 421–436 (2012)CrossRefGoogle Scholar
  11. 11.
    H.A. Abdou, J. Pointon, Credit scoring, statistical techniques and evaluation criteria: a review of the literature. Intell. Syst. Accounts Finance Manag. 18, 59–88 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Strauss Carvalho Cunha
    • 1
  • Emanuel Mineda Carneiro
    • 2
  • Lineu Fernando Stege Mialaret
    • 3
    Email author
  • Luiz Alberto Vieira Dias
    • 2
  • Adilson Marques da Cunha
    • 2
  1. 1.Brazilian Federal Service of Data Processing - SERPROJacareiBrazil
  2. 2.Computer Science DepartmentBrazilian Aeronautics Institute of Technology - ITASao Jose dos CamposBrazil
  3. 3.Federal Institute of Education, Science and Technology of Sao Paulo - IFSPJacareiBrazil

Personalised recommendations