The ST-Vis Tool for SpatioTemporal Visualization

  • Ana Paula S. Braatz Vieira
  • Rafael S. João
  • Luciana A. S. Romani
  • Marcela X. Ribeiro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)


Analyzing and understanding spatial data that vary over time is a complex task. Usually, the data is arranged in a tabular or text forms. We develop the ST-Vis (SpatioTemporal Visualization) tool to provide a visual representation of spatiotemporal data, which must help users to understand a temporal variation in a region when combining the parallel coordinates graph with a geographic map, a temporal texture, and a table. The temporal texture maps the linear form of the variation of the Normalized Difference Vegetation Index (NDVI), resulting in a representation of colors texture, and each texture cell refers to a period. ST-Vis provides a simultaneous spatiotemporal representation of data, and the visualizations interact with each other through animations. We evaluated ST-Vis by interviewing some domain experts, computer science, and other field students, who experienced ST-Vis tool. The results show that ST-Vis allows the understanding of spatiotemporal data through the generated visualizations. This tool simultaneously displays visualizations, which have interactions with each other through animations.


NDVI Parallel coordinates Spatial data Temporal data Temporal texture 


  1. 1.
    C.M.S. Aquino, J.G.B. Oliveira, Estudo da dinâmica do Índice de Vegetação por Diferença Normalizada (NDVI) no núcleo de São Raimundo Nonato-PI. GEOUSP: Espaço e Tempo (Online) 31, 157–168 (2012)Google Scholar
  2. 2.
    K. Chang, Parallel coordinates (2012),
  3. 3.
    P. Compieta et al., Exploratory spatio-temporal data mining and visualization. J. Vis. Lang. Comput. 18(3), 255–279 (2007)Google Scholar
  4. 4.
    M.G. de Oliveira, C. de Souza Baptista, GeoSTAT - a system for visualization, analysis and clustering of distributed spatiotemporal data, in GeoInfo (2012), pp. 108–119Google Scholar
  5. 5.
  6. 6.
    ENGESAT, NDVI - Criando ìndice de vegetação no global mapper (2017).
  7. 7.
    D. Guo, J. Chen, A.M. Maceachren, K. Liao, A visualization system for spacetime and multivariate patterns (VIS-STAMP). IEEE Trans. Vis. Comput. Graph. 12(6), 1461–1474 (2006)Google Scholar
  8. 8.
    INSA, NDVI - Índice de Vegetação por Diferença Normalizada (2014).
  9. 9.
    A. Inselberg, The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)Google Scholar
  10. 10.
  11. 11.
    A. Maria, C. Petrini, C. Arraes, V. Jansle, J. Rocha, Comparação entre perfis temporais de NDVI e NDVI ponderado em relação ao uso da terra, in Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Curitiba - PR, INPE (2017), p. 0452Google Scholar
  12. 12.
    R.E. Roth, K.S. Ross, B.G. Finch, W. Luo, A.M. Maceachren, A user-centered approach for designing and developing spatiotemporal crime analysis tools, in Proceedings of GIScience, [S.l.: s.n.], vol. 15 (2010)Google Scholar
  13. 13.
    J.W. Rouse et al., Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (Texas A&M University, Texas, 1974)Google Scholar
  14. 14.
    J. Rouse Jr., R. Haas, J. Schell, D. Deering, Monitoring vegetation systems in the great plains with ERTS, 1974Google Scholar
  15. 15.
    L.S. Shiratsuchi et al., Sensoriamento remoto: conceitos básicos e aplicações na agricultura de precisão (Embrapa Solos-Capítulo em livro técnico (INFOTECA-E), 2014)Google Scholar
  16. 16.
    R.R. Vatsavai et al., *Miner: a suit of classifiers for spatial, temporal, ancillary, and remote sensing data mining, in Information Technology: New Generations, 2008. ITNG 2008. Fifth International Conference on (IEEE, Piscataway, NJ, 2008), pp. 801–806Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ana Paula S. Braatz Vieira
    • 1
  • Rafael S. João
    • 1
  • Luciana A. S. Romani
    • 2
  • Marcela X. Ribeiro
    • 1
  1. 1.Federal University of São Carlos (UFSCar)São CarlosBrazil
  2. 2.Embrapa Agricultural InformaticsCampinasBrazil

Personalised recommendations