Advertisement

Development of a Local Cloud-Based Bioinformatics Architecture

  • Chandler Staggs
  • Michael Galloway
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)

Abstract

Cloud computing has become increasingly popular as a means of providing computational resources to ubiquitous computing tasks. Our research specifically defines computing resource needs while developing an architecture for processing and analyzing microbiome data sets. We propose a specialized cloud architecture with processing capabilities defined by various toolchains and bioinformatics scripts. This “Bioinformatics-as-a-Service” cloud architecture, named BioCloud, is in the optimization stage for processing bioinformatic requests, and allowing multi-tenant access of resources through a simple to use web-based graphical user interface. We’ll be compiling a list of Bioinformatics tools, some of which will be discussed in this paper, that will be optional components in our Biocloud platform. These tools will become apart of the plug-and-play system envisioned by the BioCloud team.

Keywords

Bioinformatics Biology Cloud architectures Docker containers Virtualization Cross-disciplinary 

References

  1. 1.
    E.E. Cloud, Available: http://eucalyptus.com/
  2. 2.
    OpenStack, Available: http://openstack.org/
  3. 3.
    OpenNebula, Available: https://opennebula.org
  4. 4.
    R. Hat, Storage for your cloud? gluster (2016). Available: https://www.gluster.org/
  5. 5.
    D. Merkel, Docker: lightweight linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)Google Scholar
  6. 6.
    R. Hat, Kvm - kernel-based virtual machine (2016). Available: https://www.redhat.com/en/resources/kvm-%E2%80%93-kernel-based-virtual-machine
  7. 7.
    J.G. Caporaso, et al., QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)Google Scholar
  8. 8.
    S. De, B.S. Pedersen, I.V. Yang, CruzDB: software for annotation of genomic intervals with UCSC genome-browser database. Bioinformatics 29(23), 3003–3006 (2013)Google Scholar
  9. 9.
    B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r25
  10. 10.
    M.C. Schatz, B. Langmead, S.L. Salzberg, Cloud computing and the dna data race. Nat. Biotechnol. 28, 691–693 (2010)Google Scholar
  11. 11.
    E. Plummer, J. Twin, D.M. Bulach, S.M. Garland, S. Tabrizi, A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J. Proteomics Bioinform. 8, 283–291 (2015)Google Scholar
  12. 12.
    P. Schloss, et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537–7541 (2009)Google Scholar
  13. 13.
    F. Meyer, D. Paarmann, M. D’Souza, R. Olson, E. Glass, et al., The metagenomics rast server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9, 386 (2008)Google Scholar
  14. 14.
    Q.D. Team, Qiita: report of progress towards an open access microbiome data analysis and visualization platform (2015)Google Scholar
  15. 15.
    Q. News and Announcements, Toward QIIME 2, Online (2015). Available: https://qiime.wordpress.com/2015/10/30/toward-qiime-2/
  16. 16.
    J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with cuda. Queue 6(2), 40–53 (2008). http://doi.acm.org/10.1145/1365490.1365500 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer ScienceWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations