The Extracellular Matrix, Growth Factors and Morphogens in Biomaterial Design and Tissue Engineering

  • Caterina Bason
  • Marialucia Gallorini
  • Anna C. BerardiEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Cells, morphogens, growth factors, and custom scaffolds are the critical ingredients for successful tissue regeneration in which morphogens and growth factors function sequentially. Extensive studies, in vitro and in vivo, have been made to explore the mechanisms and the roles played by these molecules. As a consequence, precise, localized control over the signaling of these factors and appropriate strategy selection, depending on the tissue or organ to be repaired or regenerated, is known to permit specific management of regenerative processes. The first part of the chapter examines natural ECMs which are a set of molecules secreted by cells that provide structural and biochemical support to the surrounding cells. ECMs also perform many other functions, such as actively regulating cell function through the control of biochemical gradients, cell density, spatial organization, and ligand attachment, thus influencing various types of cell processes. Subsequently, growth factors and morphogens are examined in greater depth to clarify to what degree progress has been made into improving methodologies and functionality and, perhaps, to hint at what remains to be done for the future of tissue engineering.


  1. 1.
    Katari R, Peloso A, Orlando G. Tissue engineering and regenerative medicine:semantic considerations for an evolving paradigm. Front Bioeng Biotechnol. 2015;12(2):57.Google Scholar
  2. 2.
    Hellman KB, Johnson PC, Bertram TA, Tawil B. Challenges in tissue engineering and regenerative medicine product commercialization: building an industry. Tissue Eng Part A. 2011;17(1–2):1–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Briquez PS, Hubbell JA, Martino MM. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv Wound Care (New Rochelle). 2015;4(8):479–89.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010;31(26):6772–81.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467–79.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Labouesse M. Role of the extracellular matrix in epithelial morphogenesis: a view from C. elegans. Organogenesis. 2012;8(2):65–70.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011;3(7).PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schaefer L. Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr Opin Pharmacol. 2010;10(2):185–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells. 2009;27(5):503–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Ori A, Wilkinson MC, Fernig DG. The heparanome and regulation of cell function: structures, functions and challenges. Front Biosci. 2008;1(13):4309–38.CrossRefGoogle Scholar
  14. 14.
    Boyd DF, Thomas PG. Towards integrating extracellular matrix and immunological pathways. Cytokine. 2017;98:79–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest. 2001;108(3):349–55.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development. 2007;134(23):4177–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldoni S, Iozzo RV. Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int J Cancer. 2008;123(11):2473–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283(31):21305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brinckerhoff CE. Matrix metalloproteinases in health and disease: sculpting the human body. 1st ed. (Republic of Singapore): World Scientific Publishing Co; 2017.Google Scholar
  20. 20.
    Kozel BA, Ciliberto CH, Mecham RP. Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol. 2004;23(1):23–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I. Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol. 2005;24(1):15–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004;6(3):371–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Matsui T, Raya A, Callol-Massot C, Kawakami Y, Oishi I, Rodriguez-Esteban C, Izpisúa Belmonte JC. miles-apart-mediated regulation of cell-fibronectin interaction and myocardial migration in zebrafish. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S77–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor-Weiner H, Schwarzbauer JE, Engler AJ. Defined extracellular matrix components are necessary for definitive endoderm induction. Stem Cells. 2013;31(10):2084–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol. 2007;178(1):167–78.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Riederer I, Bonomo AC, Mouly V, Savino W. Laminin therapy for the promotion of muscle regeneration. FEBS Lett. 2015;589(22):3449–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol. 2012;31(3):155–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Sweetwyne MT, Murphy-Ullrich JE. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol. 2012;31(3):178–86.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood. 2000;96(12):3772–8.PubMedGoogle Scholar
  32. 32.
    Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016;30:1–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Hutchings H, Ortega N, Plouët J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17(11):1520–2.PubMedCrossRefGoogle Scholar
  34. 34.
    Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, Xia J, Zhang Z, Ma W, Luo T, Lawrence DA, Fay WP. Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-αVβ3 integrin cross talk. Arterioscler Thromb Vasc Biol. 2015;35(1):111–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Belair DG, Le NN, Murphy WL. Design of growth factor sequestering biomaterials. Chem Commun (Camb). 2014;50(99):15651–68.CrossRefGoogle Scholar
  37. 37.
    Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005;97(11):1093–107.PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Olsson R, Maxhuni A, Carlsson PO. Revascularization of transplanted pancreatic islets following culture with stimulators of angiogenesis. Transplantation. 2006;82(3):340–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Hsiong SX, Mooney DJ. Regeneration of vascularized bone. Periodontology. 2000;2006(41):109–22.Google Scholar
  42. 42.
    Wijelath ES, Rahman S, Namekata M, Murray J, Nishimura T, Mostafavi-Pour Z, Patel Y, Suda Y, Humphries MJ, Sobel M. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res. 2006;99(8):853–60.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mitsi M, Hong Z, Costello CE, Nugent MA. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry. 2006;45(34):10319–28.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsi M, Forsten-Williams K, Gopalakrishnan M, Nugent MA. A catalytic role of heparin within the extracellular matrix. J Biol Chem. 2008;283(50):34796–807.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chen LL, Johansson JK, Hodges RR, Zoukhri D, Ghinelli E, Rios JD, Dartt DA. Differential effects of the EGF family of growth factors on protein secretion, MAPK activation, and intracellular calcium concentration in rat lacrimal gland. Exp Eye Res. 2005;80(3):379–89.PubMedCrossRefGoogle Scholar
  46. 46.
    Eichmann A, Simons M. VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol. 2012;24(2):188–93.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Simons M. An inside view: VEGF receptor trafficking and signaling. Physiology (Bethesda). 2012;27(4):213–22.Google Scholar
  48. 48.
    Mettouchi A. The role of extracellular matrix in vascular branching morphogenesis. Cell Adh Migr. 2012;6(6):528–34.CrossRefGoogle Scholar
  49. 49.
    Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, Engen JR, Springer TA. Force interacts with macromolecular structure in activation of TGF-β. Nature. 2017;542(7639):55–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors—novel strategies bring new prospects. Biochim Biophys Acta. 2017;1864(11 Pt A):1927–1939.Google Scholar
  51. 51.
    Parker A, Rees C, Clarke J, Busby WH Jr, Clemmons DR. Binding of insulin-like growth factor (IGF)-binding protein-5 to smooth-muscle cell extracellular matrix is a major determinant of the cellular response to IGF-I. Mol Biol Cell. 1998;9(9):2383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23(6):824–54.PubMedCrossRefGoogle Scholar
  53. 53.
    Booth BA, Boes M, Andress DL, Dake BL, Kiefer MC, Maack C, Linhardt RJ, Bar K, Caldwell EE, Weiler J, et al. IGFBP-3 and IGFBP-5 association with endothelial cells: role of C-terminal heparin binding domain. Growth Regul. 1995;5(1):1–17.PubMedGoogle Scholar
  54. 54.
    Kuang Z, Yao S, Keizer DW, Wang CC, Bach LA, Forbes BE, Wallace JC, Norton RS. Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). J Mol Biol. 2006;364(4):690–704.PubMedCrossRefGoogle Scholar
  55. 55.
    Forbes BE, Hartfield PJ, McNeil KA, Surinya KH, Milner SJ, Cosgrove LJ, Wallace JC. Characteristics of binding of insulin-like growth factor (IGF)-I and IGF-II analogues to the type 1 IGF receptor determined by BIAcore analysis. Eur J Biochem. 2002;269(3):961–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Fowlkes JL, Serra DM. Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. J Biol Chem. 1996;271(25):14676–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Bach LA, Headey SJ, Norton RS. IGF-binding proteins–the pieces are falling into place. Trends Endocrinol Metab. 2005;16(5):228–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Kricker JA, Hyde CE, Van Lonkhuyzen DR, Hollier BG, Shooter GK, Leavesley DI, Herington AC, Upton Z. Mechanistic investigations into interactions between IGF-I and IGFBPs and their impact on facilitating cell migration on vitronectin. Growth Factors. 2010;28(5):359–69.PubMedCrossRefGoogle Scholar
  59. 59.
    Xu J, Liao K. Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem. 2004;279(34):35914–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. 2003;14(4):176–81. Review. PubMed PMID: 12714278.Google Scholar
  61. 61.
    Boyd DF, Thomas PG. Towards integrating extracellular matrix and immunological pathways. Cytokine. 2017;98:79–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211(1):19–26.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 2017.Google Scholar
  64. 64.
    Perea-Gil I, Prat-Vidal C, Bayes-Genis A. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin’. Stem Cell Res. 2015;6(6):248.CrossRefGoogle Scholar
  65. 65.
    An M, Kwon K, Park J, Ryu DR, Shin JA, Lee Kang J, Choi JH, Park EM, Lee KE, Woo M, Kim M. Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials. 2017;146:49–59.PubMedCrossRefGoogle Scholar
  66. 66.
    Berardocco M, Radeghieri A, Busatto S, Gallorini M, Raggi C, Gissi C, D’Agnano I, Bergese P, Felsani A, Berardi AC. RNA-seq reveals distinctive RNA profiles of small extracellular vesicles from different human liver cancer cell lines. Oncotarget. 2017;8(47):82920–39.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Belkin AM, Zhidkova NI, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K. Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. J Cell Biol. 1996;132(1–2):211–26.PubMedCrossRefGoogle Scholar
  68. 68.
    Kääriäinen M, Nissinen L, Kaufman S, Sonnenberg A, Järvinen M, Heino J, Kalimo H. Expression of alpha7beta1 integrin splicing variants during skeletal muscle regeneration. Am J Pathol. 2002;161(3):1023–31.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tarone G, Hirsch E, Brancaccio M, De Acetis M, Barberis L, Balzac F, Retta SF, Botta C, Altruda F, Silengo L. Integrin function and regulation in development. Int J Dev Biol. 2000;44(6):725–31. Review. Erratum in: Int J Dev Biol 2001 Sep;45(5–6): following 770.Google Scholar
  70. 70.
    Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EH, Koenderink GH. A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta. 2015;1853(11 Pt B):3043–52.CrossRefGoogle Scholar
  71. 71.
    Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Snedeker JG, Gautieri A. The role of collagen crosslinks in ageing and diabetes—the good, the bad, and the ugly. Muscles Ligaments Tendons J. 2014;4(3):303–8.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol. 2014;15(4):273–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215(4):445–56.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Geiger B, Tokuyasu KT, Dutton AH, Singer SJ. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA. 1980;77(7):4127–31.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Atherton P, Stutchbury B, Jethwa D, Ballestrem C. Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res. 2016;343(1):21–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 2016;343(1):42–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: a sensor for cell polarity, mechanical forces and tissue damage. BioEssays. 2016;38(7):644–53.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kim IG, Gil CH, Seo J, Park SJ, Subbiah R, Jung TH, Kim JS, Jeong YH, Chung HM, Lee JH, Lee MR, Moon SH, Park K. Mechanotransduction of human pluripotent stem cells cultivated on tunable cell-derived extracellular matrix. Biomaterials. 2018;150:100–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24(5):830–3.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lubarsky B, Krasnow MA. Tube morphogenesis: making and shaping biological tubes. Cell. 2003;112(1):19–28.PubMedCrossRefGoogle Scholar
  84. 84.
    Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, Larsen M. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002;129(24):5767–78.PubMedCrossRefGoogle Scholar
  85. 85.
    Nam JM, Onodera Y, Bissell MJ, Park CC. Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Res. 2010;70(13):5238–48.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol. 2002;4(8):632–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Weber GF, Bjerke MA, DeSimone DW. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell. 2012;22(1):104–15.PubMedCrossRefGoogle Scholar
  88. 88.
    Huveneers S, Danen EH. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci. 2009;122(Pt 8):1059–69.PubMedCrossRefGoogle Scholar
  89. 89.
    Watanabe T, Sato K, Kaibuchi K. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases. Cold Spring Harb Perspect Biol. 2009;1(3):a003020.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002;16(9):1032–54.PubMedCrossRefGoogle Scholar
  91. 91.
    Reddi AH. Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration. Ann Rheum Dis. 2003;62(Suppl 2):ii73–8.CrossRefGoogle Scholar
  92. 92.
    Bondow BJ, Faber ML, Wojta KJ, Walker EM, Battle MA. E-cadherin is required for intestinal morphogenesis in the mouse. Dev Biol. 2012;371(1):1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Iruela-Arispe ML, Beitel GJ. Tubulogenesis. Development. 2013;140(14):2851–5.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lampugnani MG. Endothelial adherens junctions and the actin cytoskeleton: an ‘infinity net’? J Biol. 2010;9(3):16.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Brinkmann BF, Steinbacher T, Hartmann C, Kummer D, Pajonczyk D, Mirzapourshafiyi F, Nakayama M, Weide T, Gerke V, Ebnet K. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation. Mol Biol Cell. 2016;27(18):2811–21.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gebala V, Collins R, Geudens I, Phng LK, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol. 2016;18(4):443–50.PubMedCrossRefGoogle Scholar
  97. 97.
    Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci USA. 2014;111(22):7968–73.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Barry AK, Wang N, Leckband DE. Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci. 2015;128(7):1341–51.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol. 2017;216(3):559–70.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126(12):2739–50.PubMedGoogle Scholar
  102. 102.
    De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.PubMedGoogle Scholar
  103. 103.
    Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.PubMedCrossRefGoogle Scholar
  104. 104.
    Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. BioEssays. 2006;28(2):117–27.PubMedCrossRefGoogle Scholar
  105. 105.
    Djouad F, Delorme B, Maurice M, Bony C, Apparailly F, Louis-Plence P, Canovas F, Charbord P, Noël D, Jorgensen C. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res Ther. 2007;9(2):R33.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lu P, Werb Z. Patterning mechanisms of branched organs. Science. 2008;322(5907):1506–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Affolter M, Zeller R, Caussinus E. Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol. 2009;10(12):831–42.PubMedCrossRefGoogle Scholar
  108. 108.
    Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Blake J, Rosenblum ND. Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol. 2014;36:2–12.PubMedCrossRefGoogle Scholar
  110. 110.
    Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.PubMedCrossRefGoogle Scholar
  111. 111.
    Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21(5):687–90.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev. 2015;1(94):3–12.CrossRefGoogle Scholar
  113. 113.
    Marti-Figueroa CR, Ashton RS. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomater. 2017;54:35–44.PubMedCrossRefGoogle Scholar
  114. 114.
    Webb DJ, Roadcap DW, Dhakephalkar A, Gonias SL. A 16-amino acid peptide from human alpha2-macroglobulin binds transforming growth factor-beta and platelet-derived growth factor-BB. Protein Sci. 2000;9(10):1986–92.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortázar I, Bustos M, Peñuelas I, Blanco G, Rodríguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borrás-Cuesta F. A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine. 2003;22(1–2):12–20. Erratum in: Cytokine. 2006;33(2):119.Google Scholar
  116. 116.
    Serratì S, Margheri F, Pucci M, Cantelmo AR, Cammarota R, Dotor J, Borràs-Cuesta F, Fibbi G, Albini A, Del Rosso M. TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol. 2009;77(5):813–25.PubMedCrossRefGoogle Scholar
  117. 117.
    Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci USA. 2013;110(12):4563–8.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Terada T, Mizobata M, Kawakami S, Yabe Y, Yamashita F, Hashida M. Basic fibroblast growth factor-binding peptide as a novel targeting ligand of drug carrier to tumor cells. J Drug Target. 2006;14(8):536–45.PubMedCrossRefGoogle Scholar
  119. 119.
    Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif Cells Nanomed Biotechnol. 2017;24:1–10.CrossRefGoogle Scholar
  120. 120.
    Berkovitch Y, Cohen T, Peled E, Schmidhammer R, Florian H, Teuschl A, Wolbank S, Yelin D, Redl H, Seliktar D. Hydrogel composition and laser micro-patterning to regulate sciatic nerve regeneration. J Tissue Eng Regen Med. 2017.Google Scholar
  121. 121.
    Paduano F, Marrelli M, Alom N, Amer M, White LJ, Shakesheff KM, Tatullo M. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed. 2017;28(8):730–48.PubMedCrossRefGoogle Scholar
  122. 122.
    Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886–90.PubMedCrossRefGoogle Scholar
  123. 123.
    Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O’Brien TD. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med. 2016;5(7):970–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ranga A, Girgin M, Meinhardt A, Eberle D, Caiazzo M, Tanaka EM, Lutolf MP. Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci USA. 2016;113(44):E6831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Boccardo S, Gaudiello E, Melly L, Cerino G, Ricci D, Martin I, Eckstein F, Banfi A, Marsano A. Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomater. 2016;15(42):127–35.CrossRefGoogle Scholar
  126. 126.
    Lorentz KM, Yang L, Frey P, Hubbell JA. Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials. 2012;33(2):494–503.PubMedCrossRefGoogle Scholar
  127. 127.
    Miller RE, Grodzinsky AJ, Cummings K, Plaas AH, Cole AA, Lee RT, Patwari P. Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 2010;62(12):3686–94.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sun W, Lin H, Chen B, Zhao W, Zhao Y, Xiao Z, Dai J. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing. J Biomed Mater Res A. 2010;92(3):887–95.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Caterina Bason
    • 1
  • Marialucia Gallorini
    • 2
  • Anna C. Berardi
    • 3
    Email author
  1. 1.Department of MedicineUniversity of VeronaVeronaItaly
  2. 2.Department of PharmacyUniversity G. d’Annunzio Chieti-PescaraPescaraItaly
  3. 3.Research Laboratory “Stem Cells” U.O.C. Immunohematology, Transfusion Center and Laboratory of HematologyHospital Santo SpiritoPescaraItaly

Personalised recommendations