Activation Energy of Time-Dependent Martensite Formation in Steel

Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The kinetics of \( \left\{ {5 \,5 \,7} \right\}_{\upgamma} \) lath martensite formation in (wt%) 17Cr-7Ni-1Al-0.09C and 15Cr-7Ni-2Mo-1Al-0.08C steels was assessed with magnetometry at sub-zero Celsius temperatures. Samples were cooled to 77 K by immersion in boiling nitrogen to suppress martensite formation. Thereafter, thermally activated martensite formation was monitored during: (i) isochronal (re)heating at different heating rates; (ii) isothermal holding at temperatures between 120 and 310 K. The activation energy, \( {\text{E}}_{\text{A}} \), of thermally activated martensite formation was quantified from the results of both isochronal and isothermal tests by applying a Kissinger-like method. In addition, the isothermal data was interpreted applying the approach presented by Borgenstam and Hillert. The results of the independent quantification methods were consistent and indicated an \( {\text{E}}_{\text{A}} \) in the range 9–13 kJ mol−1. Thereafter, the two methods were applied to evaluate the data available in the literature. The overall analysis showed that \( {\text{E}}_{\text{A}} \) varies in the range 2–27 kJ mol−1 and increases logarithmically with the total fraction of interstitials in the steel.

Keywords

Isothermal martensite Transformation kinetics Martensitic steel 

Notes

Acknowledgements

This work was financially supported by the Danish Council for Independent Research [grant number: DFF-4005-00223]. The first author acknowledges Otto Mønsted fund for financially supporting the participation in ICOMAT 2017.

References

  1. 1.
    Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation. Acta Metall 7(1):59–60CrossRefGoogle Scholar
  2. 2.
    Fei HY, Hedstrom P, Hoglund L, Borgenstam A (2016) A thermodynamic-based model to predict the fraction of martensite in steels. Metall Mater Trans 47A(9):4404–4410Google Scholar
  3. 3.
    Kurdyumov GV, Maksimova OP (1948) O kinetike prevrashcheniya austenitica v martensit pri nizikh temperaturah. Dokl Akad Nauk SSSR 61(1):83–86Google Scholar
  4. 4.
    Thadhani NN, Meyers MA (1986) Kinetics of isothermal martensitic transformation. Prog Mater Sci 30:1–37CrossRefGoogle Scholar
  5. 5.
    Lobodyuk VA, Estrin EI (2005) Isothermal martensitic transformations. Physics-uspekhi 48(7):713–732CrossRefGoogle Scholar
  6. 6.
    Zhao JC, Notis MR (1995) Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: a phenomenological rationalization of experimental observations. Mater Sci Eng R 15(4–5):135–207CrossRefGoogle Scholar
  7. 7.
    Villa M, Christiansen T, Hansen MF, Somers MAJ (2015) Investigation of martensite formation in Fe based alloys during heating from boiling nitrogen temperature. Metall Ita 11–12:39–46Google Scholar
  8. 8.
    Cech RE, Hollomon JH (1953) Rate of formation of isothermal martensite in Fe-Ni-Mn alloy. Trans AIME J Metals 197(5):685–689Google Scholar
  9. 9.
    Gulyaev AP, Makarov VM (1960) Martensitic transformation, mechanical properties, and structure of austenitic-martensitic stainless steels. Metal Sci Heat Treat 2(8):419–423CrossRefGoogle Scholar
  10. 10.
    Ullakko K, Nieminen M, Pietikäinen J (1990) Prevention of martensitic transformation during rapid cooling. Mater Sci Forum 56–58:225–228CrossRefGoogle Scholar
  11. 11.
    Kulin S, Cohen M (1950) On the martensitic transformation at temperatures approaching absolute zero. Trans AIME 188(9):1139–1143Google Scholar
  12. 12.
    Wiester HJ (1932) Die MartensitKristallisation in Filmbild. Ztsch Metallkunde 24(11):276–277Google Scholar
  13. 13.
    Foerster F, Scheil E (1940) Unterschung des zeitlichen Ablaufes von Umklappvorgängen in Metallen. Ztsch Metallkunde 32(6):165–173Google Scholar
  14. 14.
    Bunshah RF, Mehl RF (1953) Rate of propagation of martensite. Trans AIME 197(9):1251–1258Google Scholar
  15. 15.
    Yu ZZ, Clapp PC (1989) Growth dynamics study of the martensitic transformation in Fe-30 Pct Ni alloys. I. Quantitative measurements of growth velocity. Metall Trans 20A(9):1601–1615CrossRefGoogle Scholar
  16. 16.
    Nishiyama Z (1978) Martensitic transformations. Academic Press, New York, pp 236–238Google Scholar
  17. 17.
    Honma T (1958) Studies on lattice transformation of iron alloy and cobalt alloy (No.1). DENKI-SEIKO 29(4):261–276CrossRefGoogle Scholar
  18. 18.
    Nemirovskiy VV (1968) A study of the martensitic transformation in iron-nickel near compositions corresponding to a change in the mechanisms of the transformation. Fiz Met Metalloved 25(5):900–909Google Scholar
  19. 19.
    Ya Georgiyeva I, Maksimova OP (1971) Relation between kinetics and structure during martensitic transformations. Phys Metal Metallogr 32(2):135–146Google Scholar
  20. 20.
    Takashima K, Higo Y, Nunomura S (1980) Identification of acoustic emission during the martensite transformation of 304 stainless steel. Scripta Metall 14(5):489–491CrossRefGoogle Scholar
  21. 21.
    Takashima K, Higo Y, Nunomura S (1984) The propagation velocity of the martensitic transformation in 304 stainless steel. Philos Mag A 49(2):231–241CrossRefGoogle Scholar
  22. 22.
    Wilson EA (1994) The γ → α transformation in low carbon irons. ISIJ Int 34(8):615–630CrossRefGoogle Scholar
  23. 23.
    Mirzayev DA, Shteynberg MM, Ponomareva TN, Schastlivtsev VM (1979) Influence of cooling rate on the position of martensitic transformation points. 1. Carbon steels. Phys Metal Metallogr 47(1):102–111Google Scholar
  24. 24.
    Mirzayev DA, Shteynberg MM, Ponomareva TN, Schastlivtsev VM (1979) Influence of cooling rate on the position of martensitic transformation points. 2. Alloyed steels. Phys Metal Metallogr 47(5):73–79Google Scholar
  25. 25.
    Huizing R, Klostermann JA (1966) The martensite transformation in small (0.1-0.3 Mm) iron-nickel single crystals. Acta Metall 14(12):1693–1702CrossRefGoogle Scholar
  26. 26.
    Villa M, Somers MAJ (2017) Thermally activated martensite formation in ferrous alloys. Scr Mater 142(1):46–49CrossRefGoogle Scholar
  27. 27.
    Borgenstam A, Hillert M (1997) Activation energy for isothermal martensite in ferrous alloys. Acta Mater 45(2):651–662CrossRefGoogle Scholar
  28. 28.
    Mittemeijer EJ (1992) Analysis of the kinetics of phase transformation. J Mater Sci 27(15):3977–3987CrossRefGoogle Scholar
  29. 29.
    Villa M, Hansen MF, Pantleon K, Somers MAJ (2015) Anomalous kinetics of lath martensite formation in stainless steel. Mater Sci Technol 31(11):1355–1361CrossRefGoogle Scholar
  30. 30.
    Villa M, Hansen MF, Somers MAJ (2015) The sub-zero celsius treatment of precipitation hardenable semi-austenitic stainless steel. In: Proceedings of the 28th ASM HTS conference. Detroit, MI, pp 431–435Google Scholar
  31. 31.
    Shih CH, Averbach BL, Cohen M (1955) Some characteristics of the isothermal martensitic transformation. J Metals 7(1):183–187Google Scholar
  32. 32.
    Ghosh G, Raghavan V (1986) The kinetics of isothermal martensitic transformation in an Fe-23.2 wt.%Ni-2.8 wt.%Mn alloy. Mater Sci Eng 800(1):65–67CrossRefGoogle Scholar
  33. 33.
    Cech RE, Hollomon JH (1953) Rate of formation of isothermal martensite in Fe-Ni-Mn alloy. Trans AIME J Metals 197(5): 685–689Google Scholar
  34. 34.
    Holmquist M, Nilsson JO, Stigenberg AH (1995) Isothermal formation of martensite in a 12Cr-9Ni-4Mo maraging stainless steel. Scr Metal Mater 33(9):1367–1373CrossRefGoogle Scholar
  35. 35.
    Imai Y, Izumiyama M, Sasaki K (1966) Isothermal martensitic transformation in Fe-Ni-Cr alloy. Sci Report Research Inst, Tohoku Uni A 18(1):39–48Google Scholar
  36. 36.
    Ghosh G, Olson GB (1994) Kinetics of fcc → bcc heterogeneous martensitic nucleation-II. Thermal-activation. Acta Metall Mater 42(10):3371–3379CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations