Advertisement

Probabilistic Assessment of Seismic Risk of Dwelling Buildings of Barcelona. Implication for the City Resilience

  • Armando Aguilar-MeléndezEmail author
  • Lluis G. Pujades
  • Josep De la Puente
  • Alex H. Barbat
  • Mario G. Ordaz S.
  • Sergio Natan González-Rocha
  • Carlos M. Welsh-Rodríguez
  • Héctor E. Rodríguez-Lozoya
  • Nieves Lantada
  • Luis Ibarra
  • Alejandro García-Elias
  • Amelia Campos-Rios
Chapter
Part of the Resilient Cities book series (RCRUT)

Abstract

The knowledge of seismic risk of buildings can contribute to increase the resilience of cities. In the present work a new assessment of the seismic risk of dwelling buildings of Barcelona was done. This assessment was performed according to a probabilistic methodology, which is summarized in the following steps: (1) performing a probabilistic seismic hazard assessment (PSHA) to obtain exceedance rates of macroseismic intensities; (2) performing a probabilistic seismic vulnerability assessment (PSVA) of each building in order to determine probability density functions that describe the variation of a vulnerability index; and (3) performing a probabilistic seismic risk assessment (PSRA) to generate seismic risk curves in terms of frequencies of exceedance of damage states. In the present work 69,982 dwelling buildings of Barcelona were assessed. According to the results the percentage of dwelling buildings of Barcelona that have a probability equal or greater than 1% of suffer partial collapse in the next 50 years is a value between 0% and 34.29%. A value of 0% corresponds to the results of seismic risk obtained for the case where regional vulnerability modifiers were not considered during the procedure to assess the seismic vulnerability of buildings and 34.29% correspond to the case where regional vulnerability modifiers were considered. For the same two options, the losses due to the physical damage of the dwelling buildings of Barcelona assessed for an exposure time of 50 years, could vary from 807.3 to 1739.4 millions of euros, respectively. Finally, possible uses of the seismic risk results computed in the present work are mentioned.

Keywords

Seismic risk Urban zones Vulnerability index Barcelona 

Notes

Acknowledgements

Thanks to University of Veracruz, Barcelona Supercomputing Center, CONACYT and PRODEP. This research has been partially funded by the Ministry of Economy and Competitiveness (MINECO) of the Spanish Government and by the European Regional Development Fund (FEDER) of the European Union (UE) through projects referenced as: CGL2011-23621 and CGL2015-65913 -P (MINECO /FEDER, UE).

References

  1. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Vol. 55). Courier Corporation.Google Scholar
  2. Aguilar-Meléndez, A., Pujades, L., Barbat, A., & Ordaz, M. (2008). Probabilistic assessment of seismic risk in urban areas. In Proceedings of the 14th world conference on earthquake engineering (pp. 12–17).Google Scholar
  3. Aguilar-Meléndez, A., Pujades, L., Barbat, A., & Lantada, N. (2010). A probabilistic model for the seismic risk of buildings: application to assess the seismic risk of buildings in urban areas. A: US National and Canadian conference on earthquake engineering. “9th US National and 10th Canadian conference on earthquake engineering”. Toronto, pp. 1–10.Google Scholar
  4. Aguilar-Meléndez, A. (2011). Evaluación probabilista del riesgo sísmico de edificios en zonas urbanas (297 pp). Tesis doctoral. Universidad Politécnica de Cataluña.Google Scholar
  5. Aguilar-Meléndez, A., Pujades, L., Barbat, A., & Lantada, N. (2011). USERISK2011. Software for computing seismic vulnerability and seismic risk of buildings in urban areas.Google Scholar
  6. Aguilar-Meléndez, A., Pujades, L. G., Barbat A. H., Ordaz, M. G., Lantada, N., & García-Elías, A. (2012). Probabilistic assessment of the seismic risk of Barcelona. 15 WCEE Lisboa 2012.Google Scholar
  7. Aguilar-Meléndez, A., Pujades, L. G., De la Puente, J., Barbat, A. H., Lantada, N., & Campos-Rios, A. (2015a) USERISK2015. Software for computing seismic vulnerability and seismic risk of buildings in urban areas. Last accessed 11 Feb 2016. https://sites.google.com/site/userisk2015/
  8. Aguilar-Meléndez, A., Pujades, L. G., Barbat, A., Ordaz, M. G., & Lantada, N. (2015b). Estimación del Peligro Sísmico de Barcelona y su Aplicación en la Determinación del Riesgo Sísmico de la Ciudad. Capítulo 3. Libro: Mora, I. Coordinador, Metodologías aplicadas a las Ciencias de la Tierra. ISBN: 978-607-9091-49-1.Google Scholar
  9. Aguilar-Meléndez, A., Ordaz, M., De la Puente, J., González-Rocha, S. N., Rodríguez-Lozoya, H. E., Córdova-Ceballos, A., García-Elías, A., Calderón-Ramón, C., Escalante-Martínez, J. E., Laguna-Camacho, J. R., & Campos-Rios, A. (2017). Development and validation of software CRISIS to perform probabilistic seismic hazard assessment, with emphasis on the recent CRISIS2015. Computación y Sistemas (In press).Google Scholar
  10. Ajuntament de Barcelona. (2016). Touris statistics. Barcelona: city and surroundings. Last accessed 2 July 2017 http://www.diba.cat/documents/74348/78145163/1+Estad%C3%ADstiques+de+turisme+2015.+Barcelona_ciutat+i+entorn.pdf/d913b713-ba01-4ac9-abad-047df5a85405
  11. ASCE. (2010). ASCE Standard ASCE/SEI 7–10. In Minimum design loads for buildings and other structures (658 pp).Google Scholar
  12. ATC-13 (1985). Earthquake damage evaluation (492 pp). Redwood City: Data for California; Applied Technology Council.Google Scholar
  13. Barbat, A. H., Lagomarsino, S., & Pujades, L. G. (2006). Vulnerability assessment of dwelling buildings. In C. S. Oliveira, A. Roca, & X. Goula (Eds.), Assessing and managing earth-quake risk (pp. 115–134). Dordrecht: Springer.Google Scholar
  14. Benedetti, D., Benzoni, G., & Parisi, M. A. (1988). Seismic vulnerability and risk evaluation for old urban nuclei. Earthquake Engineering and Structural Dynamics, 16(2), 183–201.CrossRefGoogle Scholar
  15. Cardona, O. D., Ordaz, M. G., Reinoso, E., Yamín, L. E., & Barbat, A. H., (2012) CAPRA- Comprehensive approach to probabilistic risk assessment: International initiative for risk management effectiveness. 15 world conference on earthquake engineering. Lisboa.Google Scholar
  16. Carreño, M. L., Lantada, N., Irizarry, J., Valcarcel, J. A., Barbat, A. H., & Goula, X. (2012). Comportamiento Sísmico de los Edificios de Lorca/Seismic behavior of the buildings in Lorca. Física de la Tierra, 24, 289–314. http://revistas.ucm.es/index.php/FITE/article/view/40142.Google Scholar
  17. Cid, J., Figueras, S., Fleta, J., Goula, X., Susagna, T., & Amieiro, C. (1999). Zonación Sísmica de la Ciudad de Barcelona (pp. 263–271). Murcia: Primer Congreso Nacional de Ingeniería Sísmica.Google Scholar
  18. Cornell, A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.Google Scholar
  19. Department d’Estadística. (2016). Cifras oficiales de población. 1 enero 2015. Last accessed 22 Dec 2016. http://www.bcn.cat/estadistica/castella/dades/tpob/ine/a2015/sexe/bcn.htm
  20. Dolce, M., Kappos, A., Masi, A., Penelis, G., & Vona, M. (2006). Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies. Engineering Structures, 28, 357–371.CrossRefGoogle Scholar
  21. Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315–323.CrossRefGoogle Scholar
  22. EM-DAT (2015). Disaster list. EM-DAT. The International Disaster Database. www.emdat.be. Université Catholique de Louvain, Brussels (Belgium). Last accessed 19 Jan 2016.
  23. ERN-AL. (2010). CAPRA, Comprehensive approach for probabilistic risk assessment. http://www.ecapra.org/. Accessed 2 May 2012.
  24. Esteva, L. (1970). Regionalización símica de México para fines de ingeniería. Mexico: Institute of Engineering Series-246, UNAM.Google Scholar
  25. Faccioli, E. (2006). Seismic hazard assessment for derivation of earthquake scenarios in Risk-UE. Bulletin of Earthquake Engineering, 4, 341–364.  https://doi.org/10.1007/s10518-006-9021-2.CrossRefGoogle Scholar
  26. Faccioli, E., Pessina, V., Pitilakis, K., & Ordaz, M. (2003). WP2: Basis of a handbook of earthquake ground motions scenarios. An ad-vanced approach to earthquake risk scenarios with applica-tions to different European towns. Contract: EVK4-CT-2000-00014, 93 pp.Google Scholar
  27. FEMA. (2015a). HAZUS® MH 2.1. Multi-hazard loss estimation methodology. Earthquake model. User manual. Washington, DC, 718 pp. Last accessed 10 Mar 2016. http://www.fema.gov/media-library-data/20130726-1820-25045-1179/hzmhs2_1_eq_um.pdf
  28. FEMA. (2015b). HAZUS® MH 2.1. Multi-hazard Loss Estimation Methodology. Earthquake Model. Technical Manual. Washington, DC, 718 pp. Last accessed 10 Mar 2016. http://www.fema.gov/media-library-data/20130726-1820-25045-6286/hzmh2_1_eq_tm.pdf
  29. Gardoni, P., & LaFave, J. M. (2016). Multi-hazard Approaches to Civil Infrastructure Engineering: Mitigating Risks and Promoting Resilence. In Multi-hazard approaches to civil infrastructure engineering (pp. 3–12). Springer International Publishing.Google Scholar
  30. Giovinazzi, S. (2005). The vulnerability assessment and the damage scenario in seismic risk analysis. Doctoral thesis, Technical University of Braunschweig, and University of Florence, 222 pp.Google Scholar
  31. Goula, X., Susagna, T., Secanell, R., Fleta, J., & Roca, A. (1997). Seismic hazard assessment for Catalonia (Spain) (pp. 173–177). Barcelona: Proceedings Second Congress on Regional Geological Cartography and Information Systems.Google Scholar
  32. Grünthal, G. (1998). European Macroseismic Scale 1998 (Vol. 15, pp. 1–99). Luxemburg: Cahiers du Centre Europ’een de G’eodynamique et de S’eismologie.Google Scholar
  33. Irizarry, J., Goula, X., & Susagna, T. (2003). Evaluación de la peligrosidad sísmica de la ciudad de Barcelona en términos de aceleración espectral (pp. 389–399). 2° Congreso Nacional de Ingeniería Sísmica, Málaga, España.Google Scholar
  34. Irizarry, J.. (2004). An advanced approach to seismic risk assessment. Application to the cultural heritage and the urban system of Barcelona. Doctoral thesis, Universitat Politècnica de Catalunya, Barcelona, 406 pp.Google Scholar
  35. Irizarry, J., Lantada, N., Pujades, L. G., Barbat, A. H., Goula, X., Susagna, T., & Roca, A. (2010). Ground-shaking scenarios and urban risk evaluation of Barcelona using the Risk-UE capacity spectrum based method. Bulletin of Earthquake Engineering, 9(2), 441–466.CrossRefGoogle Scholar
  36. ISDR-UN. (2005, March). Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters. In Extract from the final report of the world conference on disaster reduction. (A/CONF. 206/6) (Vol. 380).Google Scholar
  37. Lantada N. (2007). Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona (Vol. 1, 338 pp). Tesis doctoral, Universitat Politècnica de Catalunya, Barcelona.Google Scholar
  38. Lantada, N., Pujades, L. G., & Barbat, A. H. (2009a). Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Natural Hazards, 51, 501–524.CrossRefGoogle Scholar
  39. Lantada N., Pujades L.G., & A. H. Barbat (2009b). Escenarios de riesgo sísmico para la ciudad de Barcelona (Vol. II. 76 pp). Informe técnico para el Servicio de Protección Civil. Ayuntamiento de Barcelona.Google Scholar
  40. Lantada, N., Irizarry, J., Barbat, A. H., Goula, X., Roca, A., Susagna, T., & Pujades, L. G. (2010). Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin of Earthquake Engineering, 8(2), 201–229.CrossRefGoogle Scholar
  41. Lizarralde, G., Johnson, C., & Davidson, C. (2009). Rebuilding after disasters: From emergency to sustainability. New York: Routledge.Google Scholar
  42. López Casado, C., Molina, S., Delgado, J., & Peláez, J. A. (2000). Attenuation of intensity with Epicentral distance in the Iberian peninsula. Bulletin of the Seismological Society of America, 90, 34–47.CrossRefGoogle Scholar
  43. Marincioni, F., Appiotti, F., Ferretti, M., Antinori, C., Melonaro, P., Pusceddu, A., & Oreficini-Rosi, R. (2012). Perception and communication of seismic risk: The 6 April 2009 L’Aquila earthquake case study. Earthquake Spectra, 28(1), 159–183.CrossRefGoogle Scholar
  44. Marulanda, M. C., Carreño, M. L., Cardona, O. D., Ordaz, M. G., & Barbat, A. H. (2013). Probabilistic earthquake risk assessment using CAPRA: Application to the city of Barcelona, Spain. Natural Hazards, 69(1), 59–84.CrossRefGoogle Scholar
  45. McGuire, R. K. (2004). Seismic hazard and risk analysis (221 pp). Earthquake Engineering Research Institute. MNO-10.Google Scholar
  46. McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering and Structural Dynamics, 37, 329–338.CrossRefGoogle Scholar
  47. Milutinovic, Z. V., Trendafiloski, G. S. (2003). WP4: Vulnerability of current buildings. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns (109 pp). Contract: EVK4-CT-2000-00014.Google Scholar
  48. Olivera, C., Redondo, E., Lambert, J., Riera, A., & Roca, A. (2006). The earthquakes of the XIV and XV centuries in Catalonia (NE Spain). First European conference on earthquake engineering and seismology. Ginebra, Suiza, 10 pp.Google Scholar
  49. Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D'Amico, V. (2015). CRISIS2015. Program for computing seismic hazard. Last accessed 18 Feb 2016. https://sites.google.com/site/codecrisis2015/
  50. Ordaz, M., Martinelli, F., D’Amico, V., & Meletti, C. (2013). CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment. Seismological Research Letters, 84(3), 495–504.CrossRefGoogle Scholar
  51. Rockefeller Foundation. (2017). 100 resilient cities. Last accessed 2 Dec 2017. http://www.100resilientcities.org/cities#/-_/
  52. Secanell, R., Goula, X., Susagna, T., Fleta, J., & Roca, A. (2004). Seismic hazard zonation of Catalonia, Spain, integrating random uncertainties. Journal of Seismology, 8, 25–40.CrossRefGoogle Scholar
  53. Susagna, M. T., & Goula, X. (1999). Atles Sísmic de Catalunya. Volum 1: Catàleg de sismicitat (p. 413). Barcelona: Institut Cartogràfic de Catalunya.Google Scholar
  54. UNISDR. (2015). Sendai framework for disaster risk reduction 2015–2030. http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf. Last accessed 3 Mar 2017.
  55. United Nations. (2012, March). How to make cities more resilient. A handbook for local government leaders. Geneva. http://www.unisdr.org/files/26462_handbookfinalonlineversion.pdf. Last accessed 20 Jan 2016.
  56. United Nations. (2013). Plan of action on disaster risk reduction for resilience. United Nations System. Chief Executives Board for Coordination. 14 pp. http://www.preventionweb.net/files/33703_actionplanweb14.06cs1.pdf. Last accessed 19 Jan 2016.
  57. UN-Habitat. (2016). City resilience profiling programme. http://unhabitat.org/urban-initiatives/initiatives-programmes/city-resilience-profiling-programme/. Last accessed 19 Jan 2016.
  58. USGS. (2016a). 2010 significant earthquake and news headlines archive. http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/
  59. USGS. (2016b). 2011 significant earthquake and news headlines archive. http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/
  60. Villani, M. (2010). High resolution SHA in the vicinity of earthquake sources. Ph. D. thesis, Instituto Universitario di Studi Superiori, Pavia, ROSE School.Google Scholar
  61. Villani, M., Faccioli, E., & Ordaz, M. (2010). Verification of CRISIS2008 code.Google Scholar
  62. Zschau, J. (2017). MATRIX (New multi-hazard and multi-risk assessment methods for Europe) Report Summary. Project ID: 265138. Funded under: FP7-Environment. Germany. http://cordis.europa.eu/result/rcn/156166_en.html. Last accessed 8 Mar 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Armando Aguilar-Meléndez
    • 1
    Email author
  • Lluis G. Pujades
    • 2
  • Josep De la Puente
    • 3
  • Alex H. Barbat
    • 4
  • Mario G. Ordaz S.
    • 5
  • Sergio Natan González-Rocha
    • 6
  • Carlos M. Welsh-Rodríguez
    • 7
  • Héctor E. Rodríguez-Lozoya
    • 8
  • Nieves Lantada
    • 2
  • Luis Ibarra
    • 9
  • Alejandro García-Elias
    • 10
  • Amelia Campos-Rios
    • 11
  1. 1.Barcelona Supercomputing Center (BSC)Barcelona, Spain & Faculty of Civil Engineering, Universidad VeracruzanaPoza RicaMexico
  2. 2.Division of Geotechnical Engineering and Geosciences, Department of Civil and Environmental EngineeringUniversitat Politècnica de Catalunya. BarcelonaTECHBarcelonaSpain
  3. 3.Barcelona Supercomputing Center (BSC)BarcelonaSpain
  4. 4.Division of Mechanics, Continuous Media and structures, Department of Civil and Environmental EngineeringUniversitat Politècnica de Catalunya. BarcelonaTECHBarcelonaSpain
  5. 5.Engineering InstituteUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  6. 6.Barcelona Supercomputing Center (BSC), Barcelona, Spain & Faculty of Chemical SciencesUniversidad VeracruzanaPoza RicaMexico
  7. 7.Earth Sciences CenterUniversidad VeracruzanaXalapaMexico
  8. 8.Faculty of EngineeringUniversidad Autónoma de SinaloaLos MochisMexico
  9. 9.Department of Civil & Environmental EngineeringThe University of UtahSalt Lake CityUSA
  10. 10.Faculty of Civil EngineeringUniversidad VeracruzanaPoza RicaMexico
  11. 11.Services of EngineeringTuxpanMexico

Personalised recommendations