Advertisement

On the Cost of Negation for Dynamic Pruning

  • Joel MackenzieEmail author
  • Craig Macdonald
  • Falk Scholer
  • J. Shane Culpepper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10772)

Abstract

Negated query terms allow documents containing such terms to be filtered out of a search results list, supporting disambiguation. In this work, the effect of negation on the efficiency of disjunctive, top-k retrieval is examined. First, we show how negation can be integrated efficiently into two popular dynamic pruning algorithms. Then, we explore the efficiency of our approach, and show that while often efficient, negation can negatively impact the dynamic pruning effectiveness for certain queries.

Keywords

Dynamic pruning Query semantics Negation Efficiency 

Notes

Acknowledgements

This work was supported by the Australian Research Council’s Discovery Projects Scheme (DP170102231), an Australian Government Research Training Program Scholarship, and a grant from the Mozilla Foundation.

References

  1. 1.
    Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: Proceedings WWW, pp. 387–396 (2006)Google Scholar
  2. 2.
    Macdonald, C., Tonellotto, N., Ounis, I.: Efficient & effective selective query rewriting with efficiency predictions. In: Proceedings SIGIR, pp. 495–504 (2017)Google Scholar
  3. 3.
    Kim, Y., Seo, J., Croft, W.B.: Automatic Boolean query suggestion for professional search. In: Proceedings SIGIR, pp. 825–834 (2011)Google Scholar
  4. 4.
    Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: the public and their queries. JASIST 52(3), 226–234 (2001)CrossRefGoogle Scholar
  5. 5.
    Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin, J.: Earlybird: real-time search at Twitter. In: Proceedings ICDE, pp. 1360–1369 (2012)Google Scholar
  6. 6.
    Macdonald, C., Santos, R.L.T., Ounis, I.: The whens and hows of learning to rank for web search. Inf. Retriev. 16(5), 584–628 (2013)CrossRefGoogle Scholar
  7. 7.
    Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.Y.: Efficient query evaluation using a two-level retrieval process. In: Proceedings CIKM, pp. 426–434 (2003)Google Scholar
  8. 8.
    Ding, S., Suel, T.: Faster top-\(k\) document retrieval using block-max indexes. In: Proceedings SIGIR, pp. 993–1002 (2016)Google Scholar
  9. 9.
    Petri, M., Culpepper, J.S., Moffat, A.: Exploring the magic of WAND. In: Proceedings ADCS, pp. 58–65 (2013)Google Scholar
  10. 10.
    Crane, M., Culpepper, J.S., Lin, J., Mackenzie, J., Trotman, A.: A comparison of Document-at-a-Time and Score-at-a-Time query evaluation. In: Proceedings WSDM, pp. 201–210 (2017)Google Scholar
  11. 11.
    Turtle, H., Flood, J.: Query evaluation: strategies and optimizations. Inf. Proc. Man. 31(6), 831–850 (1995)CrossRefGoogle Scholar
  12. 12.
    Strohman, T., Turtle, H., Croft, W.B.: Optimization strategies for complex queries. In: Proceedings SIGIR, pp. 219–225 (2005)Google Scholar
  13. 13.
    Mallia, A., Ottaviano, G., Porciani, E., Tonellotto, N., Venturini, R.: Faster blockmax wand with variable-sized blocks. In: Proceedings SIGIR, pp. 625–634 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RMIT UniversityMelbourneAustralia
  2. 2.University of GlasgowGlasgowScotland, UK

Personalised recommendations