Advertisement

The Development and Implementation of Instruction and Remote Access Components of Additive Manufacturing

  • Ismail FidanEmail author
  • Amy Elliott
  • Mel Cossette
  • Thomas Singer
  • Ed Tackett
Chapter

Abstract

Additive manufacturing (AM), also known as 3D printing, is one of the latest emerging widespread production technologies. Almost any complex-part geometry is easily made using this technology and is usually used reliably. Many implementations of AM exist from areas as diverse as food industry to biomedical engineering; such a broad-spectrum usage of this technology makes it extremely attractive when combined with its low cost, reliability, color range, and complexity abilities.

Though the cost of buying new AM machines varies greatly depending on the size of the machines (AM equipment ranges from desktop printers to very large production machines), AM equipment is still not affordable for many educational institutions due to limited or low equipment, consumable supplies, physical space, and maintenance budgets. Such issues become even more important for educational organizations in underserved and underdeveloped districts, which typically have inadequate support from their constituents.

To address this issue, AM laboratories and their functionalities can easily be made available through the internet. Educational institutions which do not have the capability of AM technologies can easily access and utilize other laboratories’ capabilities. In the past, various remotely accessible AM laboratories such as these have been introduced, and their advantages and limitations in various P16 STEM (science, technology, engineering, and mathematics) practices have been reported. In this chapter, the authors introduce a novel concept of accessing external AM laboratories via smartphones and advanced computer technologies.

Keywords

Additive manufacturing Laboratory STEM Smartphone Remote access 

Notes

Acknowledgments

This work is part of a larger project funded by the Advanced Technological Education program of the National Science Foundation, DUE #1601587.

References

  1. Aziz, E. S., Chang, Y., Esche, S. K., & Chassapis, C. (2012). Capturing assembly constraints of experimental setups in a virtual laboratory environment. In ASME 2012 International Mechanical Engineering Congress and Exposition (pp. 191–200).Google Scholar
  2. Columbus, L. (2016). Demand for 3D printing skills is accelerating globally. Forbes. Retrieved from http://www.forbes.com/sites/louiscolumbus/2014/09/15/demand-for-3d-printing-skills-is-accelerating-globally/
  3. Fidan, I. (2017). Remotely accessible rapid prototyping laboratory: Design and implementation framework. Rapid Prototyping Journal, 18(5), 344–352.CrossRefGoogle Scholar
  4. Fidan, I., Elkeelany, O., & Ghani, N. (2009). The development of a remotely accessible rapid prototyping laboratory, National Science Foundation Award. Retrieved from http://www.nsf.gov/awardsearch/showAward?AWD_ID=0536509&HistoricalAwards=false
  5. Fidan, I., Singer, T., & Cossette, I. (2016). AM-WATCH: Additive manufacturing – workforce advancement training coalition and hub. National Science Foundation Award. Retrieved from http://www.nsf.gov/awardsearch/showAward?AWD_ID=1601587&HistoricalAwards=false
  6. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C., Shin, Y. C., Zhang, S., & Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89.CrossRefGoogle Scholar
  7. Gibson, I., Rosen, D., & Stucker, B. (2010). Additive manufacturing technologies (Vol. 238). New York: Springer.CrossRefGoogle Scholar
  8. Huang, Y., & Leu, M. C. (2013). Frontiers of additive manufacturing research and education: An NSF additive manufacturing workshop report. Arlington: National Science Foundation.Google Scholar
  9. Lan, H. (2009). Web-based rapid prototyping and manufacturing systems: A review. Computers in Industry, 60(9), 643–656.CrossRefGoogle Scholar
  10. Meisel, N. A., & Williams, C. B. (2015). Design and assessment of a 3D printing vending machine. Rapid Prototyping Journal, 21(5), 471–481.CrossRefGoogle Scholar
  11. mydlink. (2017). Wifi cameras. Retrieved from https://www.mydlink.com/entranc
  12. Patton, K., Dostie, D., Leonard, W., White, M., & Fidan, I. (2008). Rapid prototyping instructional delivery support, National Science Foundation Award. Retrieved from http://www.nsf.gov/awardsearch/showAward?AWD_ID=0501527&HistoricalAwards=false

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ismail Fidan
    • 1
    Email author
  • Amy Elliott
    • 2
  • Mel Cossette
    • 3
  • Thomas Singer
    • 4
  • Ed Tackett
    • 5
  1. 1.College of EngineeringTennessee Technological UniversityCookevilleUSA
  2. 2.Manufacturing Demonstration FacilityOak Ridge National LaboratoryKnoxvilleUSA
  3. 3.National Resource Center for Materials Technology EducationEdmonds Community CollegeLynnwoodUSA
  4. 4.The Science, Mathematics and Engineering DivisionSinclair Community CollegeDaytonUSA
  5. 5.J B Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations