Advertisement

Model-Based Inquiry in Computer-Supported Learning Environments: The Case of Go-Lab

  • Tasos Hovardas
  • Margus Pedaste
  • Zacharias Zacharia
  • Ton de Jong
Chapter

Abstract

This chapter focuses on model-based inquiry in computer-supported environments, especially through the use of the Go-Lab platform (www.golabz.eu). Go-Lab is an online learning platform that offers students the opportunity to engage in inquiry-based science learning, in a structured and supportive manner, by providing environments for learning (i.e., Inquiry Learning Spaces), where virtual or remote laboratories and software scaffolds (e.g., tools for generating hypotheses and designing experiments) that support inquiry learning processes have been integrated. The purpose of this chapter is to unravel how the Go-Lab platform, especially some of its virtual laboratories, can be used for model-based learning. In so doing, we discuss core requirements for model-based inquiry in expressing, testing, and revising models. Further, we present three examples of Go-Lab virtual laboratories, with modeling and simulation affordances, to explain how they could be used by educators as means for enacting model-based inquiry.

Keywords

Affordance Guidance Model-based inquiry Inquiry cycle Modeling tool 

Notes

Acknowledgments

This book chapter reports on work undertaken within the frame of the Go-Lab project (Project title: Global Online Science Labs for Inquiry Learning at School; Call identifier: FP7-ICT-2011-8; Project number: 317601) funded by the European Union. The present document does not represent the opinion of the European Union, and the European Union should not be held responsible for any use that might be made of its content.

References

  1. Ariza, Y., Lorenzano, P., & Adúriz-Bravo, A. (2016). Meta-theoretical contributions to the constitution of a model-based didactics of science. Science & Education.  https://doi.org/10.1007/s11191-016-9845-3.CrossRefGoogle Scholar
  2. Campbell, T., Oh, P. S., & Neilson, D. (2013). Reification of five types of modeling pedagogies with model-based inquiry (MBI) modules for high school science classrooms. In M. S. Khine & I. M. Saleh (Eds.), Approaches and strategies in next generation science learning (pp. 106–126). Hershey: IGI Global.CrossRefGoogle Scholar
  3. Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., & Zuwallack, R. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, Science & Technology Education, 11, 159–176.Google Scholar
  4. Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research & Development, 53, 15–24.CrossRefGoogle Scholar
  5. Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22, 1041–1053.CrossRefGoogle Scholar
  6. Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiment in educational research. Educational Researcher, 32, 9–13.CrossRefGoogle Scholar
  7. Coll, R. K., & Lajium, D. (2011). Modeling and the future of science learning. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling cognitive tools for scientific enquiry (pp. 3–21). New York: Springer.Google Scholar
  8. De Boer, G. E., Quellmalz, E. S., Davenport, J. L., Timms, M. J., Herrmann-Abell, C. F., Buckley, B. C., Jordan, K. A., Huang, C.-W., & Flanagan, J. C. (2014). Comparing three online testing modalities: Using static, active, and interactive online testing modalities to access middle school students’ understanding of fundamental ideas and use of inquiry skills related to ecosystems. Journal of Research in Science Teaching, 51, 523–554.CrossRefGoogle Scholar
  9. de Jong, T. (2015). Go-Lab classroom scenarios handbook. Deliverable D1.4. The Go-Lab Project: Global Online Science Labs for Inquiry Learning at School.Google Scholar
  10. de Jong, T., & van Joolingen, W. R. (2007). Model-facilitated learning. In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communication and technology (3rd ed., pp. 457–468). New York: Lawrence Erlbaum.Google Scholar
  11. de Jong, T., van Joolingen, W. R., Giemza, A., Girault, I., Hoppe, U., Kindermann, J., Kluge, A., Lazonder, A. W., Vold, V., Weinberger, A., Weinbrenner, S., Wichmann, A., Anjewierden, A., Bodin, M., Bollen, L., D’Ham, C., Dolonen, J., Engler, J., Geraedts, C., Grosskreutz, H., Hovardas, T., Julien, R., Lechner, J., Ludvigsen, S., Matteman, Y., Meistadt, Ø., Næss, B., Ney, M., Pedaste, M., Perritano, A., Rinket, M., von Schlanbusch, H., Sarapuu, T., Schulz, F., Sikken, J., Slotta, J., Toussaint, J., Verkade, A., Wajeman, C., Wasson, B., Zacharia, Z. C., & van der Zanden, M. (2010). Learning by creating and exchanging objects: The SCY experience. British Journal of Educational Technology, 41, 909–921.CrossRefGoogle Scholar
  12. de Jong, T., Weinberger, A., van Joolingen, W. R., Ludvigsen, S., Ney, M., Girault, I., Kluge, A., Lazonder, A., Pedaste, M., Wasson, B., Wichmann, A., Geraedts, C., Hovardas, T., Julien, R., Lejeune, A., Manoli, C., Matteman, Y., Sarapuu, T., Vold, V., Wanders, B., & Zacharia, Z. (2012). Using scenarios to design complex technology-enhanced learning environments. Educational Technology Research & Development, 60, 883–901.CrossRefGoogle Scholar
  13. de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340, 305–308.CrossRefGoogle Scholar
  14. de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: The Go-Lab federation of online labs. Smart Learning Environments, 1, 1–16.CrossRefGoogle Scholar
  15. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16, 725–749.CrossRefGoogle Scholar
  16. Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123–182.CrossRefGoogle Scholar
  17. Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students’ model-driven explanation-construction. Journal of Research in Science Teaching, 52, 895–921.CrossRefGoogle Scholar
  18. Giere, R. N. (1991). Understanding scientific reasoning (3rd ed.). New York: Harcourt Brace Jovanovich College Publishers.Google Scholar
  19. Gobert, G. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22, 891–894.CrossRefGoogle Scholar
  20. Grünkorn, J., Upmeier zu Belzen, A., & Krüger, D. (2014). Assessing students’ understandings of biological models and their use in science to evaluate a theoretical framework. International Journal of Science Education, 36, 1651–1684.CrossRefGoogle Scholar
  21. Halloun, I. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.CrossRefGoogle Scholar
  22. Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the Learning Sciences, 15, 53–61.CrossRefGoogle Scholar
  23. Hovardas, T. (2016). A learning progression should address regression: Insights from developing non-linear reasoning in ecology. Journal of Research in Science Teaching, 53, 1447–1470.CrossRefGoogle Scholar
  24. Hovardas, T., & Korfiatis, K. J. (2011). Towards a critical re-appraisal of ecology education: Scheduling an educational intervention to revisit the ‘Balance of Nature’ metaphor. Science & Education, 20, 1039–1053.CrossRefGoogle Scholar
  25. Hovardas, T., Xenofontos, N., & Zacharia, Z. (2017). Using virtual labs in an inquiry context: The effect of a hypothesis formulation tool and an experiment design tool on students’ learning. In Levin, I., & Tsybulsky, D. (Eds.), Digital tools and solutions for inquiry based STEM learning (pp. 58–83). Hershey: IGI Global.Google Scholar
  26. Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15, 11–34.CrossRefGoogle Scholar
  27. Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25, 1369–1386.CrossRefGoogle Scholar
  28. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.CrossRefGoogle Scholar
  29. Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S., & Ryan, N. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (TM) into practice. The Journal of the Learning Sciences, 12, 495–547.CrossRefGoogle Scholar
  30. Lefkaditou, A., Korfiatis, K., & Hovardas, T. (2014). Contextualizing the teaching and learning of ecology: Historical and philosophical considerations. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 523–550). Dordrecht: Springer.Google Scholar
  31. Lehrer, R., & Schauble, L. (2006). Scientific thinking and scientific literacy: Supporting development in learning in context. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (Vol. 4, 6th ed., pp. 153–196). Hoboken: Wiley.Google Scholar
  32. Lehrer, R., & Schauble, L. (2015). Learning progressions: The whole world is NOT a stage. Science Education, 99, 432–437.CrossRefGoogle Scholar
  33. Louca, L., & Zacharia, Z. (2008). The use of computer-based programming environments as computer modeling tools in early science education: The cases of textual and graphical program languages. International Journal of Science Education, 30, 287–323.CrossRefGoogle Scholar
  34. Louca, T. L., & Zacharia, C. Z. (2012). Modeling-based learning in science education: A review. Educational Review, 64, 471–492.CrossRefGoogle Scholar
  35. Louca, L. T., & Zacharia, Z. C. (2015). Examining learning through modeling in K-6 science education. Journal of Science Education and Technology, 24(2–3), 192–215.CrossRefGoogle Scholar
  36. Matthews, M. R. (2005). Idealization and Galileo’s pendulum discoveries: Historical, philosophical and pedagogical considerations. In M. R. Matthews, C. F. Gauld, & A. Stinner (Eds.), The pendulum: Scientific, historical, philosophical & educational perspectives (pp. 209–235). Dordrecht: Springer.CrossRefGoogle Scholar
  37. McComas, W. F. (2002). The nature of science in science education. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  38. McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15, 153–191.CrossRefGoogle Scholar
  39. Mellar, H., & Bliss, J. (1994). Introduction: Modeling and education. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Tompsett (Eds.), Learning with artificial worlds: Computer based modeling in the curriculum (pp. 1–7). London: The Falmer Press.Google Scholar
  40. Nersessian, N. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 17–34). Cambridge: Cambridge University Press.Google Scholar
  41. Nersessian, N. (2005). Interpreting scientific and engineering practices: Integrating the cognitive, social, and cultural dimensions. In M. Gorman, R. D. Tweney, D. Gooding, & A. Kincannon (Eds.), Scientific and technological thinking. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  42. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33, 1109–1130.CrossRefGoogle Scholar
  43. Olympiou, G., Zacharia, Z. C., & de Jong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575–587.CrossRefGoogle Scholar
  44. Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of the Learning Sciences, 13, 423–451.CrossRefGoogle Scholar
  45. Pedaste, M., & Sarapuu, T. (2006a). Developing an effective support system for inquiry learning in a Web-based environment. Journal of Computer Assisted Learning, 22, 47–62.CrossRefGoogle Scholar
  46. Pedaste, M., & Sarapuu, T. (2006b). The factors influencing the outcome of solving story-problems in a Web-based learning environment. Interactive Learning Environments, 14, 153–176.CrossRefGoogle Scholar
  47. Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61.CrossRefGoogle Scholar
  48. Petridou, E., Psillos, D., Hatzikraniotis, E., & Kallery, M. (2013). A study on the exploratory use of microscopic models as investigative tools: The case of electrostatic polarization. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 199–212). Dordrecht: Springer.CrossRefGoogle Scholar
  49. Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86.CrossRefGoogle Scholar
  50. Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13, 273–304.CrossRefGoogle Scholar
  51. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23, 165–205.CrossRefGoogle Scholar
  52. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Archer, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632–654.CrossRefGoogle Scholar
  53. Shea, N. A., & Duncan, R. G. (2013). From theory to data: The process of refining learning progressions. The Journal of the Learning Sciences, 22, 7–32.CrossRefGoogle Scholar
  54. Soulios, I., & Psillos, D. (2016). Enhancing student teachers’ epistemological beliefs about models and conceptual understanding through a model-based inquiry process. International Journal of Science Education, 38, 1212–1233.CrossRefGoogle Scholar
  55. Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.CrossRefGoogle Scholar
  56. Tasiopoulou, E., & de Jong, T. (2016). Integrated validation and evaluation report and recommendations. Deliverable D8.4 (Complete version). The Go-Lab Project: Global Online Science Labs for Inquiry Learning at School.Google Scholar
  57. van Joolingen, W. R., & Zacharia, Z. C. (2009). Developments in inquiry learning. In N. Balacheff, S. Ludvigsen, T. de Jong, & S. Barnes (Eds.), Technology-enhanced learning (pp. 21–37). Dordrecht: Springer.CrossRefGoogle Scholar
  58. van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsberg, E. R., & Manlove, S. (2005). Co-Lab: Research and development of an online learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21, 671–688.CrossRefGoogle Scholar
  59. van Joolingen, W. R., Giemza, A., Bollen, L., Bodin, M., Manske, S., Engler, J., & Halik, K. (2011). SCY cognitive scaffolds and tools (DII.2). Twente: SCY Consortium.Google Scholar
  60. Verhoeff, R. P., Waarlo, A. J., & Boersma, K. T. (2008). Systems modelling and the development of coherent understanding of cell biology. International Journal of Science Education, 30, 543–568.CrossRefGoogle Scholar
  61. Weinberger, A., Dolonen, J., Hovardas, A., Pedaste, M., Kluge, A., Ludvigsen, S., et al. (2009). SCY scenario handbook and pedagogical plans, version 1. Enschede: University of Twente.Google Scholar
  62. Windschitl, M., Thompson, J., & Braaten, M. (2008a). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92, 941–967.CrossRefGoogle Scholar
  63. Windschitl, M., Thompson, J., & Braaten, M. (2008b). How novice science teachers appropriate epistemic discourses around model-based inquiry for use in classrooms. Cognition and Instruction, 26, 310–378.CrossRefGoogle Scholar
  64. Zacharia, Z. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and Instruction, 32(2), 101–158.CrossRefGoogle Scholar
  65. Zacharia, Z. C., Manoli, C., Xenofontos, N., de Jong, T., Pedaste, M., van Riesen, S. A. N., Kamp, E. T., Mäeots, M., Siiman, L., & Tsourlidaki, E. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: A literature review. Educational Technology Research and Development, 63, 257–302.CrossRefGoogle Scholar
  66. Zangori, L., & Forbes, C. T. (2015). Exploring third-grade student model-based explanations about plant relationships within an ecosystem. International Journal of Science Education, 37, 2942–2964.CrossRefGoogle Scholar
  67. Zangori, L., Forbes, C. T., & Schwarz, C. V. (2015). Exploring the effect of embedded scaffolding within curricular tasks on third-grade students’ model-based explanations about hydrologic cycling. Science & Education, 24, 957–981.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tasos Hovardas
    • 1
  • Margus Pedaste
    • 2
  • Zacharias Zacharia
    • 1
  • Ton de Jong
    • 3
  1. 1.Department of Educational Sciences, Faculty of Social Sciences and EducationUniversity of CyprusNicosiaCyprus
  2. 2.Centre for Educational Technology, Institute of Education, Faculty of Social SciencesUniversity of TartuTartuEstonia
  3. 3.Department of Instructional Technology, Faculty of Behavioral, Management and Social SciencesUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations