Skip to main content

Deep Convolutional Generative Adversarial Network for Procedural 3D Landscape Generation Based on DEM

  • Conference paper
  • First Online:
Interactivity, Game Creation, Design, Learning, and Innovation (ArtsIT 2017, DLI 2017)

Abstract

This paper proposes a novel framework for improving procedural generation of 3D landscapes using machine learning. We utilized a Deep Convolutional Generative Adversarial Network (DC-GAN) to generate heightmaps. The network was trained on a dataset consisting of Digital Elevation Maps (DEM) of the alps. During map generation, the batch size and learning rate were optimized for the most efficient and satisfying map production. The diversity of the final output was tested against Perlin noise using Mean Square Error [1] and Structure Similarity Index [2]. Perlin noise is especially interesting as it has been used to generate game maps in previous productions [3, 4]. The diversity test showed the generated maps had a significantly greater diversity than the Perlin noise maps. Afterwards the heightmaps was converted to 3D maps in Unity3D. The 3D maps’ perceived realism and videogame usability was pilot tested, showing a promising future for DC-GAN generated 3D landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? IEEE Sig. Process. Mag. 26, 98–117 (2009). https://doi.org/10.1109/MSP.2008.930649

    Article  Google Scholar 

  2. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  3. Cook, M.: We’ve Run Out of Planets - Procedural Generation After No Man’s Sky. Cut Garnet Games (2016)

    Google Scholar 

  4. Mojang, A.B.: Minecraft. Stockholm, Sweden (2013)

    Google Scholar 

  5. Microsoft: Age Of Empires III. Microsoft, Redmond (2013)

    Google Scholar 

  6. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. IEEE Trans. Affect. Comput. 2, 147–161 (2011)

    Google Scholar 

  7. Togelius, J., Preuss, M.: Towards multiobjective procedural map generation

    Google Scholar 

  8. Shaker, N., Asteriadis, S., Yannakakis, G.N., Karpouzis, K.: Fusing visual and behavioral cues for modeling user experience in games. IEEE Trans. Cybern. 43, 1519–1531 (2013). https://doi.org/10.1109/TCYB.2013.2271738

    Article  Google Scholar 

  9. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-42716-4

    Google Scholar 

  10. Brandon, A.: Image completion with deep learning in TensorFlow. GitHub (2016)

    Google Scholar 

  11. De Carli, D.M., Bevilacqua, F., Pozzer, C.T., Cordeiro D’Ornellas, M.: A survey of procedural content generation techniques suitable to game development. In: Brazilian Symposium on Games and Digital Entertainment, SBGAMES, pp. 26–35 (2011). https://doi.org/10.1109/sbgames.2011.15

  12. Yannakakis, G.N., Togeliu, J.: Artificial Intelligence and Games (First Public Draft) (2017)

    Google Scholar 

  13. Perlin, K.: Improving noise. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, p. 681 (2002). https://doi.org/10.1145/566570.566636

  14. Rose, T.J., Bakaoukas, A.G.: Algorithms and approaches for procedural terrain generation. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications, VS-Games 2016, pp. 4–5 (2016). https://doi.org/10.1109/vs-games.2016.7590336

  15. De Ferranti, J.: Viewfinder Panoramas (2012)

    Google Scholar 

  16. Paradox Interactive: Cities: Skyline. Paradox Interactive. Stockholm, Sweden (2015)

    Google Scholar 

  17. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Networks, pp. 1–9. (2014). https://doi.org/10.1001/jamainternmed.2016.8245

  18. Goodfellow, I.: NIPS 2016 Tutorial: Generative Adversarial Networks (2016). https://doi.org/10.1001/jamainternmed.2016.8245

  19. Lotter, W., Kreiman, G., Cox, D.: Unsupervised learning of visual structure using predictive generative networks, pp. 1–12 (2016). https://doi.org/10.1109/iccv.2015.465

  20. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., et al.: Photo-realistic single image super-resolution using a generative adversarial network (2016)

    Google Scholar 

  21. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  22. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks (2016). https://doi.org/10.1177/1470320311410924

  23. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2016)

    Google Scholar 

  24. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks (2016)

    Google Scholar 

  25. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis (2016)

    Google Scholar 

  26. Reed, S., van den Oord, A., Kalchbrenner, N., Bapst, V., Botvinick, M., deFreitas, N.: Generating interpretable images with controllable structure. In: ICLR 2017, pp. 1–12 (2016)

    Google Scholar 

  27. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Technical report, Science Department, University of Toronto, pp. 1–60 (2009). 10.1.1.222.9220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nordvig Møller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wulff-Jensen, A., Rant, N.N., Møller, T.N., Billeskov, J.A. (2018). Deep Convolutional Generative Adversarial Network for Procedural 3D Landscape Generation Based on DEM. In: Brooks, A., Brooks, E., Vidakis, N. (eds) Interactivity, Game Creation, Design, Learning, and Innovation. ArtsIT DLI 2017 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-76908-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76908-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76907-3

  • Online ISBN: 978-3-319-76908-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics