Refining a Heuristic for Constructing Bayesian Networks from Structured Arguments

  • Remi WietenEmail author
  • Floris Bex
  • Linda C. van der Gaag
  • Henry Prakken
  • Silja Renooij
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 823)


Recently, a heuristic was proposed for constructing Bayesian networks (BNs) from structured arguments. This heuristic helps domain experts who are accustomed to argumentation to transform their reasoning into a BN and subsequently weigh their case evidence in a probabilistic manner. While the underlying undirected graph of the BN is automatically constructed by following the heuristic, the arc directions are to be set manually by a BN engineer in consultation with the domain expert. As the knowledge elicitation involved is known to be time-consuming, it is of value to (partly) automate this step. We propose a refinement of the heuristic to this end, which specifies the directions in which arcs are to be set given specific conditions on structured arguments.


Bayesian Networks Structured argumentation 


  1. 1.
    Bex, F., Renooij, S.: From arguments to constraints on a Bayesian network. In: Baroni, P., Gordon, T.F., Scheffler, T., Stede, M. (eds.) Computational Models of Argument: Proceedings of COMMA 2016, pp. 95–106. IOS Press, The Netherlands (2016)Google Scholar
  2. 2.
    Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Networks. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  3. 3.
    Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer Verlag, Berlin (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)CrossRefGoogle Scholar
  5. 5.
    Shachter, R.D.: A graph-based inference method for conditional independence. In: D’Ambrosio, B.D., Smets, P., Bonissone, P.P. (eds.) Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, pp. 353–360. Morgan Kaufmann Publishers Inc., San Mateo (1991)Google Scholar
  6. 6.
    Timmer, S.T., Meyer, J.-J.C., Prakken, H., Renooij, S., Verheij, B.: A two-phase method for extracting explanatory arguments from Bayesian networks. Int. J. Approx. Reason. 80, 475–494 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    van der Gaag, L.C., Helsper, E.M.: Experiences with modelling issues in building probabilistic networks. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 21–26. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  8. 8.
    van der Gaag, L.C., Meyer, J.-J.C.: The dynamics of probabilistic structural relevance. In: van der Gaag, L.C., Meyer, J.-J.C. (eds.) Proceedings of the Eighth Dutch Conference on Artificial Intelligence (NAIC’96), pp. 145–156. Utrecht University, Utrecht (1996)Google Scholar
  9. 9.
    Verheij, B., Bex, F., Timmer, S.T., Vlek, C.S., Meyer, J.-J.C., Renooij, S., Prakken, H.: Arguments, scenarios and probabilities: connections between three normative frameworks for evidential reasoning. Law Probab. Risk 15(1), 35–70 (2015)CrossRefGoogle Scholar
  10. 10.
    Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Bonissone, P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pp. 255–270. Elsevier Science Inc., New York (1991)Google Scholar
  11. 11.
    Wellman, M.P., Henrion, M.: Explaining “explaining away”. IEEE Trans. Pattern Anal. Mach. Intell. 15(3), 287–292 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Remi Wieten
    • 1
    Email author
  • Floris Bex
    • 1
  • Linda C. van der Gaag
    • 1
  • Henry Prakken
    • 1
    • 2
  • Silja Renooij
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Faculty of LawUniversity of GroningenGroningenThe Netherlands

Personalised recommendations