Investigating Proteins with β-Sheets

  • Tim Skern
Part of the Learning Materials in Biosciences book series (LMB)


► Chapter  7 revealed structural variations that can be observed in proteins built up of α-helices. In this chapter, we will see a similar variability in the structures of proteins composed mostly of β-sheets. One common arrangement of β-strands is called a β-sandwich because two sets of hydrogen-bonded strands pack back to back; the side-chains are the filling of the sandwich. As a classic example, we will examine the immunoglobulin fold and its interaction with an antigen; as an example of a novel β-sandwich fold, we will examine the short N-terminal domain of the vaccinia virus protein A46 whose C-terminus we examined in ► Chap.  7. We will also learn how to investigate whether a protein fold is a novel one. The chapter closes by illuminating another β-fold, known as the jelly roll, frequently found in the particles of icosahedral viruses. Using simple PyMOL commands, the entire shell of an icosahedral virus is assembled. Together, all of the examples show that similar folds involving β-sheets can be constructed by proteins with completely unrelated primary sequences (◘ Table 8.1).


  1. Amit AG, Mariuzza RA, Phillips SE, Poljak RJ (1986) Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution. Science 233(4765):747–753CrossRefPubMedGoogle Scholar
  2. Astbury WT, Street A (1932) X-ray studies of the structure of hair, wool, and related fibres I – general. Philos T R Soc Lond 230:75–101. CrossRefGoogle Scholar
  3. Astbury WT, Woods HJ (1934) X-ray studies of the structure of hair, wool, and related fabrics II – the molecular structure and elastic properties of hair keratin. Philos T R Soc Lond 232:333–U367. CrossRefGoogle Scholar
  4. Brändén C-I, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Pub, New YorkGoogle Scholar
  5. Canady MA, Larson SB, Day J, McPherson A (1996) Crystal structure of turnip yellow mosaic virus. Nat Struct Biol 3(9):771–781CrossRefPubMedGoogle Scholar
  6. Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24CrossRefPubMedGoogle Scholar
  7. Fedosyuk S, Bezerra GA, Radakovics K, Smith TK, Sammito M, Bobik N, Round A, Ten Eyck LF, Djinovic-Carugo K, Uson I, Skern T (2016) Vaccinia virus Immunomodulator A46: a lipid and protein-binding scaffold for sequestering host TIR-domain proteins. PLoS Pathog 12(12):e1006079. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Finch JT, Klug A (1959) Structure of poliomyelitis virus. Nature 183(4677):1709–1714CrossRefPubMedGoogle Scholar
  9. Fischmann TO, Bentley GA, Bhat TN, Boulot G, Mariuzza RA, Phillips SE, Tello D, Poljak RJ (1991) Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-a resolution. J Biol Chem 266(20):12915–12920PubMedGoogle Scholar
  10. Franklin RE (1955) Structure of tobacco mosaic virus. Nature 175(4452):379–381CrossRefPubMedGoogle Scholar
  11. Guddat LW, Herron JN, Edmundson AB (1993) Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc Natl Acad Sci U S A 90(9):4271–4275CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hadfield AT, Lee W, Zhao R, Oliveira MA, Minor I, Rueckert RR, Rossmann MG (1997) The refined structure of human rhinovirus 16 at 2.15 a resolution: implications for the viral life cycle. Structure 5(3):427–441CrossRefPubMedGoogle Scholar
  13. Harris LJ, Larson SB, Hasel KW, Day J, Greenwood A, McPherson A (1992) The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360(6402):369–372. CrossRefPubMedGoogle Scholar
  14. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229(4720):1358–1365CrossRefPubMedGoogle Scholar
  15. Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44(W1):W351–W355. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233(1):123–138. CrossRefPubMedGoogle Scholar
  17. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589(19 Pt A):2570–2577. CrossRefPubMedGoogle Scholar
  18. Klug A, Finch JT, Franklin RE (1957a) Structure of turnip yellow mosaic virus. Nature 179(4561):683–684CrossRefPubMedGoogle Scholar
  19. Klug A, Finch JT, Franklin RE (1957b) The structure of turnip yellow mosaic virus; x-ray diffraction studies. Biochim Biophys Acta 25(2):242–252CrossRefPubMedGoogle Scholar
  20. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797. CrossRefPubMedGoogle Scholar
  21. Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (2000) Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8(12):1329–1339CrossRefPubMedGoogle Scholar
  22. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379(6563):311–319. CrossRefPubMedGoogle Scholar
  23. Laskowski RA, Jablonska J, Pravda L, Varekova RS, Thornton JM (2017) PDBsum: structural summaries of PDB entries. Protein Sci.
  24. Miller ST, Hogle JM, Filman DJ (2001) Ab initio phasing of high-symmetry macromolecular complexes: successful phasing of authentic poliovirus data to 3.0 a resolution. J Mol Biol 307(2):499–512. CrossRefPubMedGoogle Scholar
  25. Namba K, Stubbs G (1986) Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly. Science 231(4744):1401–1406CrossRefPubMedGoogle Scholar
  26. Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437(7059):764–769. CrossRefPubMedGoogle Scholar
  27. Padlan EA, Segal DM, Spande TF, Davies DR, Rudikoff S, Potter M (1973) Structure at 4.5 Å resolution of a phosphorylcholine-binding fab. Nat New Biol 245(145):165–167CrossRefPubMedGoogle Scholar
  28. Pauling L (1940) A theory of the structure and process of formation of antibodies. J Am Chemical Soc 62:2643–2657. CrossRefGoogle Scholar
  29. Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A 37(5):251–256CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pauw BR (2013) Everything SAXS: small-angle scattering pattern collection and correction. J Phys-Condens Mat 25(38):Artn 383201. CrossRefGoogle Scholar
  31. Prasad BV, Schmid MF (2012) Principles of virus structural organization. Adv Exp Med Biol 726:17–47. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rajan SS, Ely KR, Abola EE, Wood MK, Colman PM, Athay RJ, Edmundson AB (1983) Three-dimensional structure of the mcg IgG1 immunoglobulin. Mol Immunol 20(7):787–799CrossRefPubMedGoogle Scholar
  33. Ramsland PA, Farrugia W (2002) Crystal structures of human antibodies: a detailed and unfinished tapestry of immunoglobulin gene products. J Mol Recognit 15(5):248–259. CrossRefPubMedGoogle Scholar
  34. Rodriguez DD, Grosse C, Himmel S, Gonzalez C, de Ilarduya IM, Becker S, Sheldrick GM, Uson I (2009) Crystallographic ab initio protein structure solution below atomic resolution. Nat Methods 6(9):651–653. CrossRefPubMedGoogle Scholar
  35. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG et al (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317(6033):145–153CrossRefPubMedGoogle Scholar
  36. Rudikoff S, Potter M, Segal DM, Padlan EA, Davies DR (1972) Crystals of phosphorylcholine-binding fab-fragments from mouse myeloma proteins: preparation and x-ray analysis. Proc Natl Acad Sci U S A 69(12):3689–3692CrossRefPubMedPubMedCentralGoogle Scholar
  37. Satow Y, Cohen GH, Padlan EA, Davies DR (1986) Phosphocholine binding immunoglobulin fab McPC603. An X-ray diffraction study at 2.7 a. J Mol Biol 190(4):593–604CrossRefPubMedGoogle Scholar
  38. Scott DJ (2014) Small-angle scattering and the protein crystallographer. Biochemist 36:44–48Google Scholar
  39. Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A 74(11):5140–5144CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tong LA, de Vos AM, Milburn MV, Kim SH (1991) Crystal structures at 2.2 Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J Mol Biol 217(3):503–516CrossRefPubMedGoogle Scholar
  41. Wang JH, Yan YW, Garrett TP, Liu JH, Rodgers DW, Garlick RL, Tarr GE, Husain Y, Reinherz EL, Harrison SC (1990) Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348(6300):411–418. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tim Skern
    • 1
  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria

Personalised recommendations