Advertisement

An Archive and a Tool: PDB and PyMOL

  • Tim Skern
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter will first introduce you to the freely accessible data bank of protein structures (the “PDB”) and show you how to search, access, and understand the information within it. The second half presents a tool, PyMOL, with which you can start to visualize and analyze the data stored in the PDB.

Supplementary material

(MOV 376733 kb)

(MOV 191085 kb)

(MOV 129556 kb)

(MOV 171089 kb)

References

  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221.  https://doi.org/10.1107/S0907444909052925 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alber T, Sun DP, Wilson K, Wozniak JA, Cook SP, Matthews BW (1987) Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature 330(6143):41–46.  https://doi.org/10.1038/330041a0 CrossRefPubMedGoogle Scholar
  3. Anon (1971) Protein Data Bank. Nat New Biol 233(42):223Google Scholar
  4. Aumayr M, Schrempf A, Uzulmez O, Olek KM, Skern T (2017) Interaction of 2A proteinase of human rhinovirus genetic group A with eIF4E is required for eIF4G cleavage during infection. Virology 511:123–134.  https://doi.org/10.1016/j.virol.2017.08.020 CrossRefPubMedGoogle Scholar
  5. Baase WA, Liu L, Tronrud DE, Matthews BW (2010) Lessons from the lysozyme of phage T4. Protein Sci 19(4):631–641.  https://doi.org/10.1002/pro.344 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2012) The Protein Data Bank at 40: reflecting on the past to prepare for the future. Structure 20(3):391–396.  https://doi.org/10.1016/j.str.2012.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77CrossRefPubMedGoogle Scholar
  9. Drenth J, Kalk KH, Swen HM (1976) Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry 15(17):3731–3738CrossRefPubMedGoogle Scholar
  10. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501.  https://doi.org/10.1107/S0907444910007493 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Goldstone DC, Walker PA, Calder LJ, Coombs PJ, Kirkpatrick J, Ball NJ, Hilditch L, Yap MW, Rosenthal PB, Stoye JP, Taylor IA (2014) Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci U S A 111(26):9609–9614.  https://doi.org/10.1073/pnas.1402448111 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK (2015) The RCSB PDB “Molecule of the month”: inspiring a molecular view of biology. PLoS Biol 13(5):e1002140.  https://doi.org/10.1371/journal.pbio.1002140 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44(W1):W351–W355.  https://doi.org/10.1093/nar/gkw357 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kamphuis IG, Kalk KH, Swarte MB, Drenth J (1984) Structure of papain refined at 1.65 Å resolution. J Mol Biol 179(2):233–256CrossRefPubMedGoogle Scholar
  15. Matthews BW, Remington SJ (1974) The three dimensional structure of the lysozyme from bacteriophage T4. Proc Natl Acad Sci U S A 71(10):4178–4182CrossRefPubMedPubMedCentralGoogle Scholar
  16. Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246(4934):1149–1152CrossRefPubMedGoogle Scholar
  17. Pauling L, Hayward R (1964) The architecture of molecules. WH Freeman, San FranciscoGoogle Scholar
  18. Rose PW, Prlic A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45(D1):D271–D281.  https://doi.org/10.1093/nar/gkw1000 CrossRefPubMedGoogle Scholar
  19. Schwartz TW, Sakmar TP (2011) Structural biology: snapshot of a signalling complex. Nature 477(7366):540–541.  https://doi.org/10.1038/477540a CrossRefPubMedGoogle Scholar
  20. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64(Pt 1):112–122.  https://doi.org/10.1107/S0108767307043930 CrossRefPubMedGoogle Scholar
  21. The PyMOL Molecular Graphics System, Schrödinger, LLCGoogle Scholar
  22. Weaver LH, Matthews BW (1987) Structure of bacteriophage T4 lysozyme refined at 1.7 Å resolution. J Mol Biol 193(1):189–199CrossRefPubMedGoogle Scholar
  23. Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SB (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245(4918):616–621CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tim Skern
    • 1
  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria

Personalised recommendations