Advertisement

Postharvest Biology and Technology of Cherry

  • Manzoor Ahmad Shah
  • Shabir Ahmad Mir
  • Showket Ahmad Pala
Chapter

Abstract

Cherry is a non climacteric fleshy drupe cultivated in the temperate regions of the world. The two commercially important species of cherries are sweet and sour cherries. Cherries are highly perishable and very difficult to handle after harvest. They are susceptible to bruising, desiccation and browning of stem. They are also susceptible to various physiological and microbial disorders. Several postharvest technologies have been developed to increase the shelf life and market value of cherries. These include controlled atmosphere storage, modified atmosphere storage (MAP), irradiation, edible coatings and some chemical treatments. The other methods meant for processed cherry products like dehydration, freezing and canning have also been adopted for processing of cherries.

Keywords

Sweet cherry Sour cherry Harvest index MAP Edible coatings Irradiation Canning 

References

  1. Adaskaveg, J. E., Forster, H., & Thompson, D. F. (2000). Identification and etiology of visible quiescent infections of Monilinia fructicola and Botrytis cinerea in sweet cherry fruit. Plant Disease, 84, 328–333.CrossRefGoogle Scholar
  2. Aday, M. S., & Caner, C. (2010). Understanding the effects of various edible coatings on the storability of fresh cherry. Packaging Technology and Science, 23, 441–456.CrossRefGoogle Scholar
  3. Aghdam, M. S., Dokhanieh, A. Y., Hassanpour, H., & Fard, J. R. (2013). Enhancement of antioxidant capacity of cornelian cherry (Cornus mas) fruit by postharvest calcium treatment. Scientia Horticulturae, 161, 160–164.CrossRefGoogle Scholar
  4. Aider, M., & de Halleux, D. (2008). Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT – Food Science and Technology, 41, 1768–1775.CrossRefGoogle Scholar
  5. Akbudak, B., Tezcan, H., & Eris, A. (2008). Effect of low-dose gamma irradiation on the quality of sweet cherry during storage. Italian Journal of Food Science, 20, 383–392.Google Scholar
  6. Alique, R., Zamorano, J. P., Martinez, M. A., & Alonso, J. (2005). Effect of heat and cold treatments on respiratory metabolism and shelf-life of sweet cherry, type picota cv “Ambrunes”. Postharvest Biology and Technology, 35, 153–165.CrossRefGoogle Scholar
  7. Alonso, J., & Alique, R. (2006). Sweet cherries. In Y. H. Hui, J. Barta, M. P. Cano, T. W. Gusek, J. S. Sidhu, & N. K. Sinha (Eds.), Handbook of fruits and fruit processing (pp. 359–367). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  8. Aslantas, R., Angin, I., Boydas, M. G., Ozkan, G., & Kara, M. (2016). Fruit characteristics and detachment parameters of sour cherry (Prunus cerasus L. cv. ‘Kütahya’) as affected by various maturity stages. Erwerbs-Obstbau.  https://doi.org/10.1007/s10341-016-0270-1.
  9. Barbosa-Cánovas, G. V., Altunakar, B., & Mejía-Lorío, D. J. (2005). Freezing of fruits and vegetables: An agribusiness alternative for rural and semi-rural areas (Vol. 158). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  10. Bartley, I. M., & Knee, M. (1982). The chemistry of textural changes in fruit during storage. Food Chemistry, 9, 47–58.CrossRefGoogle Scholar
  11. Bernalte, M. J., Sabio, E., Hernandez, M. T., & Gervasini, C. (2003). Influence of storage delay on quality of ‘Van’ sweet cherry. Postharvest Biology and Technology, 28, 303–312.CrossRefGoogle Scholar
  12. Bright, J., & Marte, S. (2004). Cherry growing in NSW. In NSW Agriculture (Ed.), Agfacts (Vol. H5, pp. 1–8). Sydney: NSW Department of Industry.Google Scholar
  13. Chaovanalikit, A., & Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69, 67–72.Google Scholar
  14. Chen, P. M., Mellenthin, W. M., Kelly, S. B., & Facteau, T. J. (1981). Effects of low oxygen and temperature on quality retention of ‘Bing’ cherries during prolonged storage. Journal of American Society of Horticultural Sciences, 106, 533.Google Scholar
  15. Chockchaisawasdee, S., Golding, J. B., Vuong, Q. V., Papoutsis, K., & Stathopoulos, C. E. (2016). Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends in Food Science & Technology, 55, 72–83.CrossRefGoogle Scholar
  16. Chong, J., Lai, S., & Yang, H. (2015). Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control, 53, 195–205.CrossRefGoogle Scholar
  17. Clausen, M.R., Pedersen, B.H., Bertram, H.C., & Kidmose, U. (2011). Quality of sour cherry juice of different clones and cultivars (Prunus cerasus L.) determined by a combined sensory and NMR spectroscopic approach. Journal of Agricultural and Food Chemistry, 59, 12124–12130.CrossRefGoogle Scholar
  18. Conte, A., Scrocco, C., Lecce, L., Mastromatteo, M., & Del Nobile, M. A. (2009). Ready-to-eat cherries: Study on different packaging systems. Innovative Food Science & Emerging Technologies, 10, 564–571.CrossRefGoogle Scholar
  19. Coombe, B. G. (1976). The development of fleshy fruits. Annual Review of Plant Physiology, 27, 507–528.CrossRefGoogle Scholar
  20. Crisosto, C. H., Garner, D., Doyle, J., & Day, K. R. (1993). Relationship between fruit respiration, bruising susceptibility, and temperature in sweet cherries. HortScience, 28, 132–135.Google Scholar
  21. Crisosto, C. H., Crisosto, G. M., & Ritenour, M. A. (2002). Testing the reliability of skin color as an indicator of quality for early season ‘Brooks’ (Prunus avium L.) cherry. Postharvest Biology and Technology, 24, 147–154.CrossRefGoogle Scholar
  22. Crisosto, C. H., Crisosto, G. M., & Metheney, P. (2003). Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology, 28, 159–167.CrossRefGoogle Scholar
  23. Dang, Q. F., Yan, J. Q., Li, Y., Cheng, X. J., Liu, C. S., & Chen, X. G. (2010). Chitosan acetate as an active coating material and its effects on the storing of Prunus avium L. Journal of Food Science, 75, S125–S131.CrossRefGoogle Scholar
  24. Dangyang, K., & Kader, A. A. (1992). External and internal factors influence fruit tolerance to low-oxygen atmospheres. Journal of the American Society for Horticultural Science, 117, 913–918.Google Scholar
  25. Dever, M. C., MacDonald, R. A., Cliff, M. A., & Lane, W. D. (1996). Sensory evaluation of sweet cherry cultivars. HortScience, 31, 150–153.Google Scholar
  26. DeVries-Patterson, R. M., Jones, A. L., & Cameron, A. C. (1991). Fungistatic effects of carbon dioxide in a package environment on the decay of Michigan sweet cherries by Monilinia fructicola. Plant Disease, 75, 943–946.CrossRefGoogle Scholar
  27. Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53, 435–450.CrossRefGoogle Scholar
  28. Dong, F., & Wang, X. (2018). Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT-Food Science and Technology, 89, 117–122.CrossRefGoogle Scholar
  29. Drake, S. R., & Neven, L. G. (1997). Quality response of ‘Bing’ and ‘Rainier’ sweet cherries to low dose electron beam irradiation. Journal of Food Processing and Preservation, 21, 345–351.CrossRefGoogle Scholar
  30. Eris, A., Turk, R., Ozer, M. H., & Celik, E. (1993). Changes of some quality factors of sweet cherries after the storage in CA-condition. In Proceedings of the 6th International CA Research Conference (pp. 534–542).Google Scholar
  31. FAOSTAT. (2017). Food and Agricultural Organization Statistical Database. Accessed December 24, 2017, from http://www.fao.org/faostat/en
  32. Ferretti, G., Bacchetti, T., Belleggia, A., & Neri, D. (2010). Cherry antioxidants: From farm to table. Review Molecules, 15, 6993–7005.CrossRefGoogle Scholar
  33. Golding, J. B., Jessup, A., Spohr, L., Daniels, D., Satyan, S., Pristijono, P., et al. (2012). Efficacy of a combination quarantine treatment at 3°C as a potential disinfestation treatment for Queensland fruit fly (Bactrocera tryoni (Froggatt)) in cherry fruit. Acta Horticulturae, 934, 343–346.CrossRefGoogle Scholar
  34. Goliáš, J., Němcová, A., Čaněk, A., & Kolenčíková, D. (2007). Storage of sweet cherries in low oxygen and high carbon dioxide atmospheres. Horticultural Science, 34, 26–34.CrossRefGoogle Scholar
  35. Gong, Y. P., Fan, X. T., & Mattheis, J. P. (2002). Responses of ‘Bing’ and ‘Rainier’ sweet cherries to ethylene and 1-methylcyclopropene. Journal of the American Society for Horticultural Science, 127, 831–835.Google Scholar
  36. Guyer, D. E., Sinha, N. K., Chang, T. S., & Cash, J. N. (1993). Physicochemical and sensory characteristics of selected Michigan sweet cherry (Prunus avium L.) cultivars. Journal of Food Quality, 16, 355–370.CrossRefGoogle Scholar
  37. Habib, M., Bhat, M., Dar, B. N., & Wani, A. A. (2017). Sweet cherries from farm to table: A review. Critical Reviews in Food Science and Nutrition, 57, 1638–1649.CrossRefGoogle Scholar
  38. Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2017). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules.  https://doi.org/10.1016/j.ijbiomac.2017.11.097.
  39. Hedhly, A., Hormaza, J. I., & Herrero, M. (2007). Warm temperatures at bloom reduce fruit set in sweet cherry. Journal of Applied Botany and Food Quality, 81, 158–164.Google Scholar
  40. Hedrick, U. P. (1914). The cherries of New York. Geneva: New York Agricultural Experiment Station.Google Scholar
  41. Herrero, M., Rodrigo, J., & Wunsch, A. (2017). Flowering, fruit set and development. In Cherries: Botany, production and uses, José Quero-García, Amy Iezzoni Joanna Pulawska and Gregory Lang CABI: Boston, pp. 14–35.CrossRefGoogle Scholar
  42. Hong, Y. H., Park, J. Y., Park, J. H., Chung, M. S., Kwon, K. S., & Chung, K. (2008). Inactivation of Enterobacter sakazakii, Bacillus cereus and Salmonella typhimurium in powdered weaning food by electron beam irradiation. Radiation Physics and Chemistry, 77, 1097–1100.CrossRefGoogle Scholar
  43. Horvath-Kerkai, E. (2006). Manufacturing fruit beverages. In Y.H. Hui, J. Barta, M.P. Cano, T.W. Gusek, J.S. Sidhu, & N.K. Sinha (Eds.), Handbook of fruits and fruit processing (pp. 205-215). Iowa: Blackwell Publishing.Google Scholar
  44. Hussain, P. R., Rather, S. A., Suradkar, P., Parveen, S., Mir, M. A., & Shafi, F. (2016). Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit. Journal of Food Science and Technology.  https://doi.org/10.1007/s13197-016-2265-1.
  45. Iezzoni, A. F. (1996). Sour cherry cultivars: Objectives and methods of fruit breeding and characteristics of principal commercial cultivars. In A. D. Webster & N. E. Looney (Eds.), Cherries: Crop physiology, production and uses (pp. 113–125). Cambridge: CAB International.Google Scholar
  46. Iezzoni, A. F. (2008). Cherries. In J. F. Hancock (Ed.), Temperate fruit crop breeding: Germplasm to genomics (pp. 151–175). Dordrecht: Springer Publishers.CrossRefGoogle Scholar
  47. Ionescu, L., Millin, K., Batovici, R., Panait, E., & Maraineanu, L. (1978). Research on the storage of sweet and sour cherries in cold stores in normal and controlled atmospheres, Lucrari Stiintifice. Institututl de Cerctari Pentru Valorifocarea Lugumelor si Fructelor, 9, 43–51.Google Scholar
  48. Jensen, M. (2017). Processing for industrial uses. In J. Quero-Garcia, A. Iezzoni, J. Pulawska, & G. Lang (Eds.), Cherries : Botany, production and uses (pp. 485–505). Boston: CABI.CrossRefGoogle Scholar
  49. Kaack, K., Spayd, E. E., & Drake, S. R. (1996). Cherry processing. In A. D. Webster & N. E. Looney (Eds.), Cherries: Crop physiology, production and uses (pp. 473–481). Wallingford: CAB International.Google Scholar
  50. Kahlke, C. J., Padilla-Zakour, O. I., Cooley, H. J., & Robinson, R. L. (2009). Shelf-life and marketing window extension in sweet cherries by the use of modified atmosphere packaging. New York Fruit Quarterly, 17, 21–24.Google Scholar
  51. Kappel, F., Fisher-Fleming, B., & Hogue, E. (1996). Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience, 31, 443–446.Google Scholar
  52. Khorshidi, S., Davarynejad, G., Tehranifar, A., & Fallahi, E. (2011). Effect of modified atmosphere packaging on chemical composition, antioxidant activity, anthocyanin, and total phenolic content of cherry fruits. Horticulture, Environment, and Biotechnology, 52, 471–481.CrossRefGoogle Scholar
  53. Kupferman, E., & Sanderson, P. (2001). Temperature management and modified atmosphere packing to preserve sweet cherry fruit quality. Postharvest Information Network, 1, 1–9. http://postharvest.tfrec.wsu.edu/EMK2001B.pdf.Google Scholar
  54. Lacroix, M., & Ouattara, B. (2000). Combined industrial processes with irradiation to assure innocuity and preservation of food products—a review. Food Research International, 33, 719–724.CrossRefGoogle Scholar
  55. Lei, J., Yang, L., Zhan, Y., Wang, Y., Ye, T., Li, Y., Deng, H., & Li, B. (2014). Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloids and Surfaces. B, Biointerfaces, 114, 60–66.CrossRefGoogle Scholar
  56. Lenahan, O. M., Whiting, M. D., & Elfving, D. C. (2006). Gibberellic acid inhibits floral bud induction and improves ‘Bing’ sweet cherry fruit quality. HortScience, 41, 654–659.Google Scholar
  57. Lester, G. E., & Grusak, M. A. (2000). Postharvest application of chelated and nonchelated calcium dip treatments to commercially grown honey dew melons: Effects on peel attributes, tissue calcium concentration, quality, and consumer preference following storage. HortTechnology, 11, 561–566.Google Scholar
  58. Looney, N., & Jackson, D. (2011). Stone fruits. In D. I. Jackson, N. E. Looney, M. Morley-Bunker, & G. F. Thiele (Eds.), Temperate and subtropical fruit production (pp. 161–180). Cambridge: Cambridge University Press.Google Scholar
  59. Mahfoudhi, N., & Hamdi, S. (2014). Use of almond gum and gum arabic as novel edible coating to delay postharvest ripening and to maintain sweet cherry (Prunus avium) quality during storage. Journal of Food Processing & Preservation, 39, 1499–1508.CrossRefGoogle Scholar
  60. Maltini, E., Torreggiani, D., Brovetto, B. R., & Bertolo, G. (1993). Functional properties of reduced moisture fruits as ingredients in food systems. Food Research International, 26, 413–419.CrossRefGoogle Scholar
  61. Martin-Diana, A. B., Rico, D., Frias, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: A review. Trends in Food Science and Technology, 18, 210–218.CrossRefGoogle Scholar
  62. Martínez-Romero, D., Alburquerque, N., Valverde, J. M., Guillén, F., Castillo, S., Valero, D., & Serrano, M. (2006). Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: A new edible coating. Postharvest Biology and Technology, 39, 93–100.CrossRefGoogle Scholar
  63. McCune, L. M., Kubota, C., Stendell-Hollins, N. R., & Thomson, C. A. (2011). Cherries and health: A review. Critical Reviews in Food Science and Nutrition, 51, 1–12.CrossRefGoogle Scholar
  64. McDonald, H., McCulloch, M., Caporaso, F., Winborne, I., Oubichon, M., Rakovski, C., & Prakash, A. (2012). Commercial scale irradiation for insect disinfestations preserves peach quality. Radiation Physics and Chemistry, 81, 697–704.CrossRefGoogle Scholar
  65. McGlasson, W. B. (1985). Ethylene and fruit ripening. HortScience, 20, 51–54.Google Scholar
  66. McLellan, M. R., & Padilla-Zakour, O. I. (2004). Sweet cherry and sour cherry processing. In D. M. Barrett, L. P. Somogyi, & H. S. Ramaswamy (Eds.), Processing fruits: Science and technology (pp. 497–511). Boca Raton: CRC Press.Google Scholar
  67. Meheriuk, M., McKenzie, B., Girard, B., Molys, A. L., Weintraub, S., Hocking, R., et al. (1997). Storage of ‘Sweetheart’ cherries in sealed plastic film. Journal of Food Quality, 20, 189–198.CrossRefGoogle Scholar
  68. Mitchell, F. G., Mayer, G., & Kader, A. A. (1980). Injuries cause deterioration of sweet cherries. California Agriculture, 34, 14–15.Google Scholar
  69. Mostafavi, F. S., Kadkhodaee, R., Emadzadeh, B., & Koocheki, A. (2015). Preparation and characterization of tragacanth–locust bean gum edible blend films. Carbohydrate Polymers, 139, 20–27.CrossRefGoogle Scholar
  70. Mozetič, B., Simčič, M., & Trebše, P. (2006). Anthocyanins and hydroxycinnamic acids of Lambert Compact cherries (Prunus avium L.) after cold storage and 1-methylcyclopropene treatment. Food Chemistry, 97, 302–309.CrossRefGoogle Scholar
  71. Olmstead, J. W., Iezzoni, A. F., & Whiting, M. D. (2007). Genotypic differences in sweet cherry fruit size are primarily a function of cell number. Journal of the American Society for Horticultural Science, 132, 697–703.Google Scholar
  72. Özkaya, O., Şener, A., Saridaş, M. A., Ünal, Ü., Valizadeh, A., & Dündar, Ö. (2015). Influence of fast cold chain and modified atmosphere packaging storage on postharvest quality of early season-harvested sweet cherries. Journal of Food Processing and Preservation, 39, 2119–2128.CrossRefGoogle Scholar
  73. Padilla-Zakour, O. I., Ryona, I., Cooley, H. J., Robinson, T. L., Osborne, J., & Freer, J. (2007). Shelf-life extension of sweet cherries by field management, post-harvest treatments, and modified atmosphere packaging. New York Fruit Quarterly, 15, 3–6.Google Scholar
  74. Parveen, S., Hussain, P. R., Mir, M. A., Shafi, F., Darakshan, S., Mushtaq, A., & Suradkar, P. (2015). Gamma irradiation treatment of cherry–impact on storage quality, decay percentage and post-refrigeration shelf-life extension. Current Research in Nutrition and Food Science, 3, 54–73.CrossRefGoogle Scholar
  75. Pasquariello, M. S., Patre, D. D., Mastrobuoni, F., Zampella, L., Scortichini, M., & Petriccione, M. (2015). Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biology and Technology, 109, 45–56.CrossRefGoogle Scholar
  76. Petracek, P. D., Joles, D. W., Shirazi, A., & Cameron, A. C. (2002). Modified atmosphere packaging of sweet cherry (Prunus avium L., cv. ‘Sams’) fruit: Metabolic responses to oxygen, carbon dioxide, and temperature. Postharvest Biology and Technology, 24, 259–270.CrossRefGoogle Scholar
  77. Remón, S., Venturini, M. E., Lopez-Buesa, P., & Oria, R. (2003). Burlat cherry quality after long range transport: Optimisation of packaging conditions. Innovative Food Science & Emerging Technologies, 4, 425–434.CrossRefGoogle Scholar
  78. Romanazzi, G., Nigro, F., & Ippolito, A. (2003). Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biology and Technology, 29, 73–80.CrossRefGoogle Scholar
  79. Romanazzi, G., Nigro, F., & Ippolito, A. (2009). Effectiveness of a short hyperbaric treatment to control postharvest decay of sweet cherries and table grapes. Postharvest Biology and Technology, 49, 440–442.CrossRefGoogle Scholar
  80. Serradilla, M. J., Martin, A., Ruiz-Moyano, S., Hernández, A., López-Corrales, M., & Córdoba, M. D. G. (2012). Physicochemical and sensorial characterisation of four sweet cherry cultivars grown in Jerte valley (Spain). Food Chemistry, 133, 1551–1559.CrossRefGoogle Scholar
  81. Serradilla, M. J., Akšic, M. F., Manganaris, G. A., Ercisli, S., González-Gómez, D., & Valero, D. (2017). Fruit chemistry, nutritional benefits and social aspects of cherries. In J. Quero-Garcia, A. Iezzoni, J. Pulawska, & G. Lang (Eds.), Cherries: Botany, production and uses (pp. 420–441). Boston: CABI.CrossRefGoogle Scholar
  82. Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science & Emerging Technologies, 6, 115–123.CrossRefGoogle Scholar
  83. Shankar, S., Reddy, J. P., Rhim, J. W., & Kim, H. Y. (2015). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468–475.CrossRefGoogle Scholar
  84. Sharma, M., Jacob, J. K., Subramanian, J., & Paliyath, G. (2010). Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.) Scientia Horticulturae, 125, 239–247.CrossRefGoogle Scholar
  85. Thang, K., Au, K., Rakovski, C., & Prakash, A. (2016). Effect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries. Journal of the Science of Food and Agriculture.  https://doi.org/10.1002/jsfa.7648.
  86. Tian, M. S., Prakash, S., Elgar, H. J., Young, H., Burmeister, D. M., & Ross, G. S. (2000). Responses of strawberry fruit to 1-methylcyclopropene (1-MCP) and ethylene. Plant Growth Regulation, 32, 83–90.CrossRefGoogle Scholar
  87. Tian, S. P., Jiang, A. L., Xu, Y., & Wang, Y. S. (2004). Responses of physiology and quality of sweet cherry fruit to different atmosphere in storage. Food Chemistry, 87, 43–49.CrossRefGoogle Scholar
  88. Toydemir, G., Capanoglu, E., Kamiloglu, S., Boyacioglu, D., De Vos, R.C., Hall, R.D., & Beekwilder, J. (2013). Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. Journal of Functional Foods, 5, 1402–1413.CrossRefGoogle Scholar
  89. USDA ARS (2016) National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory, US Department of Agriculture, Agricultural Research Service. Accessed January 2, 2016, from https://ndb.nal.usda.gov/
  90. Usenik, V., Fabčič, J., & Štampar, F. (2008). Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.) Food Chemistry, 107, 185–192.CrossRefGoogle Scholar
  91. Wang, Y., & Long, L. E. (2014). Respiration and quality responses of sweet cherry to different atmospheres during cold storage and shipping. Postharvest Biology and Technology, 92, 62–69.CrossRefGoogle Scholar
  92. Wang, L., & Vestrheim, S. (2002). Controlled atmosphere storage of sweet cherries (Prunus avium L.) Acta Agriculturae Scandinavica Section B: Plant Soil Science, 52, 136–142.CrossRefGoogle Scholar
  93. Wang, S., Chen, Y., Xu, Y., Wu, J., Xiao, G., & Fu, M. (2014a). Super atmospheric O2 packaging maintains postharvest quality of cherry (Prunus avium L.) fruit. Journal of Food Processing and Preservation, 38, 2037–2046.CrossRefGoogle Scholar
  94. Wang, Y., Xie, X., & Long, L. E. (2014b). The effect of postharvest calcium application in hydro-cooling water on tissue calcium content, biochemical changes, and quality attributes of sweet cherry fruit. Food Chemistry, 160, 22–30.CrossRefGoogle Scholar
  95. Wani, A. A., Singh, P., Gul, K., Wani, M. H., & Langowski, H. C. (2014). Sweet cherry (Prunus avium): Critical factors affecting the composition and shelf life. Food Packaging and Shelf Life, 1, 86–99.CrossRefGoogle Scholar
  96. Wargo, J. M., Padilla-Zakour, O. I., & Tandon, K. S. (2003). Modified atmosphere packaging maintains sweet cherry quality after harvest. New York Fruit Quarterly, 11, 5–8.Google Scholar
  97. Webster, A. D. (1996). The taxonomic classification of sweet and sour cherries and brief history of their cultivation. In A. D. Webster & N. E. Looney (Eds.), Cherries: Crop physiology, production, and uses (pp. 3–24). Cambridge: CAB International.Google Scholar
  98. Whiting, M. D., & Ophardt, D. (2005). Comparing novel sweet cherry crop load management strategies. HortScience, 40, 1271–1275.Google Scholar
  99. Whiting, M. D., Lang, G., & Orphardt, D. (2005). Rootstock and training system affect cherry growth, yield, and fruit quality. HortScience, 40, 582–586.Google Scholar
  100. Xin, Y., Chen, F., Lai, S., & Yang, H. (2017). Influence of chitosan-based coatings on the physicochemical properties and pectin nanostructure of Chinese cherry. Postharvest Biology and Technology, 133, 64–71.CrossRefGoogle Scholar
  101. Yamaguchi, M., Sato, I., Takase, K., Watanabe, A., & Ishiguro, M. (2004). Differences and yearly variation in number and size of mesocarp cells in sweet cherry (Prunus avium L.) cultivars and related species. Journal of the Japanese Society for Horticultural Science, 73, 12–18.CrossRefGoogle Scholar
  102. Yaman, Ö., & Bayoιndιrlι, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food Science and Technology, 35, 146–150.CrossRefGoogle Scholar
  103. Yang, Q., Wang, L., Li, F., Ma, J., & Zhang, Z. (2011). Impact of 1-MCP on postharvest quality of sweet cherry during cold storage. Frontiers of Agriculture in China, 5, 631–636.CrossRefGoogle Scholar
  104. Zhang, C., & Whiting, M. D. (2011). Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Scientia Horticulturae, 127, 341–346.CrossRefGoogle Scholar
  105. Zoffoli, J.P., Toivonen, P., &Wang, Y. (2017). Postharvest biology and handling for fresh markets. In Cherries: Botany, production and uses Jose Quero-Garcia, Amy Iezzoni, Joanna Pulawska, and Gregory Lang CABI: Boston, pp. 460–484.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manzoor Ahmad Shah
    • 1
  • Shabir Ahmad Mir
    • 2
  • Showket Ahmad Pala
    • 3
  1. 1.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia
  2. 2.Department of Food TechnologyIslamic University of Science and TechnologyAwantiporaIndia
  3. 3.Department of Food Science and TechnologyUniversity of KashmirSrinagarIndia

Personalised recommendations