Advertisement

Postharvest Biology and Technology of Loquat

  • Bisma Zargar
  • Mohammad Maqbool Mir
  • Shaiq Ahmad Ganai
  • Shabir Ahmad Mir
  • Manzoor Ahmad Shah
  • Shafat Ahmad Banday
Chapter

Abstract

Loquat, a non-climacteric fruit, is well known for its taste, juiciness and high nutrition value. Loquat is mainly consumed as fresh fruit and the important quality attributes are skin color, flesh firmness, soluble solids content, acidity and soluble solids content/acidity ratio. It has a short shelf life at ambient temperatures and is susceptible to various physical, mechanical and nutritional losses. A number of technologies have been evaluated for extending the shelf-life of loquat fruit and include cold storage, controlled atmosphere storage, modified atmosphere packaging, edible coatings, chemical and heat treatments.

Keywords

Loquat fruit Cold storage Chilling injury Modified atmosphere packaging Flesh browning 1-Methylcyclopropene 

References

  1. Akhtar, A., Abbasi, N. A., & Hussain, A. Z. H. A. R. (2010). Effect of calcium chloride treatments on quality characteristics of loquat fruit during storage. Pak. J. Bot, 42(1), 181–188.Google Scholar
  2. Amaros, A., Pretel, M. T., Zapata, P. J., Botella, M. A., Romojaro, F., & Serrano, M. (2008). Use of modified atmosphere packaging with micro-perforated polypropylene films to maintain postharvest loquat fruit quality. Food Science and Technology International, 14(1), 95–103.CrossRefGoogle Scholar
  3. Babu, I., Ali, M. A., Shamim, F., Yasmin, Z., Asghar, M., & Khan, A. R. (2015). Effect of calcium chloride application on quality characteristics and post-harvest performance of Loquat fruit during storage. International Journal of Advanced Research. 3, 602–610.Google Scholar
  4. Besada, C., Gil, R., Navarro, P., Soler, E., & Salvador, A. (2010). Physiological characterization of ‘Algerí’ loquat maturity: External colour as harvest maturity index. In III International Symposium on Loquat 887 (pp. 351–356).Google Scholar
  5. Caballero, P. (1993). El nispero y su expansion, posibilidades y limitaciones. Fruticultura, 54, 35–40.Google Scholar
  6. Cai, C., Chen, K. S., Xu, W. P., Zhang, W. S., Li, X., & Ferguson, I. (2006). Effect of 1-MCP on postharvest quality of loquat fruit. Postharvest Biology and Technology, 40, 155–162.CrossRefGoogle Scholar
  7. Cañete, M. L., Hueso, J. J., Pinillos, V., & Cuevas, J. (2015). Ripening degree at harvest affects bruising susceptibility and fruit sensorial traits of loquat (Eriobotrya japonica Lindl.) Scientia Horticulturae, 187, 102–107.CrossRefGoogle Scholar
  8. Cao, S., Zheng, Y., Yang, Z., Tang, S., & Jin, P. (2008). Control of anthracnose rot and quality deterioration in loquat fruit with methyl jasmonate. Journal of the Science of Food and Agriculture, 88, 1598–1602.CrossRefGoogle Scholar
  9. Cao, S., Zheng, Y., Wang, K., Rui, H., & Tang, S. (2009). Effects of 1‐methylcyclopropene on oxidative damage, phospholipases and chilling injury in loquat fruit. Journal of the Science of Food and Agriculture, 89(13), 2214–2220.CrossRefGoogle Scholar
  10. Cao, S. F., Zheng, Y. H., Wang, K. T., Rui, H. J., Shang, H. T., & Tang, S. S. (2010a). The effects of 1-methylcyclopropene on chilling and cell wall metabolism in loquat fruit. The Journal of Horticultural Science and Biotechnology, 85(2), 147–153.CrossRefGoogle Scholar
  11. Cao, S., Zheng, Y., Wang, K., Rui, H., & Tang, S. (2010b). Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chemistry, 118, 641–647.CrossRefGoogle Scholar
  12. Cao, S., Cai, Y., Yang, Z., Joyce, D. C., & Zheng, Y. (2014). Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chemistry, 145, 86–89.CrossRefGoogle Scholar
  13. Chen, Q. Y., Zhou, J. Y., Zhang, B., Fu, X. M., Song, X. Q., Li, X., Xu, C. J., & Chen, K. S. (2010). Sugar composition difference between white- and red-fleshed loquat fruits and its relation with activities of sucrose-metabolizing enzymes. Journal of Fruit Science, 27, 616–621.Google Scholar
  14. Cuevas, J., Salvador-Sola, F. J., Gavilán, J., Lorente, N., Hueso, J. J., & González-Padierna, C. M. (2003). Loquat fruit sink strength and growth pattern. Scientia Horticulturae, 98, 131–137.CrossRefGoogle Scholar
  15. Demarty, M., Morvan, C., & Thellier, M. (1984). Calcium and the cell wall. Plant, Cell & Environment, 7, 441–448.CrossRefGoogle Scholar
  16. Ding, C.-K., Chachin, K., Hamauzu, Y., Ueda, Y., & Imahori, Y. (1998). Effects of storage temperatures on physiology and quality of loquat fruit. Postharvest Biology and Technology, 14(3), 309–315.CrossRefGoogle Scholar
  17. Ding, C. K., Chachin, K., Ueda, Y., Imahori, Y., & Wang, C. Y. (2002). Modified atmosphere packaging maintains postharvest quality of loquat fruit. Postharvest Biology and Technology, 24, 341–348.CrossRefGoogle Scholar
  18. Ding, Z., Tian, S., Wang, Y., Li, B., Chan, Z., Han, J., & Xu, Y. (2006). Physiological response of loquat fruit to different storage conditions and its storability. Postharvest Biology and Technology, 41, 143–150.CrossRefGoogle Scholar
  19. Fahe, C., Guangbin, W., & Chenfen, L. (2003). Effects of modified atmosphere packaging on respiration and quality attributes of loquat fruit during cold storage. Transactions of the Chinese Society of Agricultural Engineering, 5, 028.Google Scholar
  20. Gariglio, N., Martinez-Fuentes, A., Mesejo, C., & Agustí, M. (2005). Control of purple spot of loquat fruit (Eriobotrya japonica) by means of mineral compounds. Annals of Applied Biology, 146, 415–419.CrossRefGoogle Scholar
  21. Ghasemnezhad, M., Nezhad, M. A., & Gerailoo, S. (2011). Changes in postharvest quality of loquat (Eriobotrya japonica) fruits influenced by chitosan. Horticulture, Environment, and Biotechnology, 54, 40–45.CrossRefGoogle Scholar
  22. Gonzalez, L., Lafuente, M.T., Zacarías, L. (2003). Maturation of loquat fruit (Eriobotrya japonica Lindl.) under Spanish growing conditions and its postharvest performance. Options Méditerr, 58, 171–179.Google Scholar
  23. Goulas, V., Minas, I. S., Kourdoulas, P. M., Vicente, A. R., & Manganaris, G. A. (2014). Phytochemical content, antioxidants and cell wall metabolism of two loquat (Eriobotrya japonica) cultivars under different storage regimes. Food Chemistry, 155, 227–234.CrossRefGoogle Scholar
  24. Hasegawa, P. N., Faria, A. F. D., Mercadante, A. Z., Chagas, E. A., Pio, R., Lajolo, F. M., Cordenunsi, B. R., & Purgatto, E. (2010). Chemical composition of five loquat cultivars planted in Brazil. Food Science and Technology, 30(2), 552–559.CrossRefGoogle Scholar
  25. Jin, P., Duan, Y., Wang, L., Wang, J., & Zheng, Y. (2014). Reducing chilling injury of loquat fruit by combined treatment with hot air and methyl jasmonate. Food and Bioprocess Technology, 7, 2259–2266.CrossRefGoogle Scholar
  26. Kader, A. A. (2009). Loquat. Recommendations for Maintaining Postharvest Quality. Postharvest Technology Research and Information Center, UC Davis, CA, Available at http://postharvest.ucdavis.edu/Produce/Producefacts/Fruit/loquat.shtml.
  27. Karabulut, O. A., Arslan, U., Kuruoglu, G., & Ozgenc, T. (2004). Control of Postharvest Diseases of Sweet Cherry with Ethanol and Hot Water. Journal of Phytopathology, 152(5), 298–303.CrossRefGoogle Scholar
  28. Koba, K., Matsuoka, A., Osada, K., & Huang, Y-S. (2007). Effect of loquat (Eriobotrya japonica) extracts on LDL oxidation. Food Chemistry, 104(1), 308–316.CrossRefGoogle Scholar
  29. Lichter, A., Zutkhy, Y., Sonego, L., Dvir, O., Kaplunov, T., Sarig, P., & Ben-Arie, R. (2002). Ethanol controls postharvest decay of table grapes. Postharvest Biology and Technology, 24, 301–308.CrossRefGoogle Scholar
  30. Liguori, G., Farina, V., Sortino, G., Mazzaglia, A., & Inglese, P. (2014). Effects of 1-methylcyclopropene on postharvest quality of white- and yellow-flesh loquat (Eriobotrya japonica Lindl.) fruit. Fruits, 69, 363–370.CrossRefGoogle Scholar
  31. Liu, F., Tu, K., Shao, X., Zhao, Y., Tu, S., Su, J., et al. (2010). Effect of hot air treatment in combination with Pichia guilliermondii on postharvest anthracnose rot of loquat fruit. Postharvest Biology and Technology, 58(1), 65–71.CrossRefGoogle Scholar
  32. Lurie, S., Pesis, E., Gadiyeva, O., Feygenberg, O., Ben-Arie, R., Kaplunov, T., Zutahy, Y., & Lichter, A. (2006). Modified ethanol atmosphere to control decay of table grapes during storage. Postharvest Biology and Technology, 42, 222–227.CrossRefGoogle Scholar
  33. Lyons, J. M. (1973). Chilling injury in plants. Annual Review of Plant Physiology, 24(1), 445–466.CrossRefGoogle Scholar
  34. Margosan, D. A., Smilanick, J. L., Simmons, G. F., & Henson, D. J. (1997). Combination of Hot Water and Ethanol to Control Postharvest Decay of Peaches and Nectarines. Plant Disease, 81(12), 1405–1409.CrossRefGoogle Scholar
  35. Pareek, S., Benkeblia, N., Janick, J., Cao, S., & Yahia, E. M. (2014). Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. Journal of the Science of Food and Agriculture, 94(8), 1495–1504.CrossRefGoogle Scholar
  36. Pinillos, V., Canete, M. L., Sanchez, R., & Cuevas, J. (2007). Fruit development and maturation phenological stages of ‘Algerie’ loquat. Acta Horticulturae, 750, 331–336.CrossRefGoogle Scholar
  37. Pinillos, V., Hueso, J. J., Marcon Filho, J. L., & Cuevas, J. (2011). Changes in fruit maturity indices along the harvest season in ‘Algerie’ loquat. Scientia Horticulturae, 129, 769–776.CrossRefGoogle Scholar
  38. Petriccione, M., Pasquariello, M. S., Mastrobuoni, F., Zampella, L., Di Patre, D., & Scortichini, M. (2015). Influence of a chitosan coating on the quality and nutraceutical traits of loquat fruit during postharvest life. Scientia Horticulturae, 197, 287–296.CrossRefGoogle Scholar
  39. Qin, L., Binggao, Y., & Xuexiu, W. (1994). The effects of storage conditions on the quality and physiological changes in loquat. Journal of Nanjing Agricultural University, 17, 27–31.Google Scholar
  40. Reid, M. S. (2002). Maturation and maturity indices. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (pp. 55–65). Oakland, CA: University of California, Agriculture and Natural Resources.Google Scholar
  41. Reig,C., Martinez-Fuentes,A., Juan,M., Gariglio,N., Marti,G.,&Mesejo,C. (2007). Tecnicas para anticipar la recoleccion del fruto del nispero japones (Eriobotrya japonica Lindl.). XI Congress National SECH Abstract 4D01.Google Scholar
  42. Rui, H., Cao, S., Shang, H., Jin, P., Wang, K., & Zheng, Y. (2010). Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Journal of the Science of Food and Agriculture, 90, 1557–1561.CrossRefGoogle Scholar
  43. Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119, 41–48.CrossRefGoogle Scholar
  44. Tian, S., Li, B., & Ding, Z. (2007). Physiological properties and storage technologies of loquat fruit. Fresh Produce, 1, 76–81.Google Scholar
  45. Wang, K., Jin, P., Tang, S., Shang, H., Rui, H., Di, H., Cai, H., & Zheng, Y. (2011). Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 22(1), 82–87.CrossRefGoogle Scholar
  46. Wang, K., Cao, S., Di, Y., Liao, Y., & Zheng, Y. (2015). Effect of ethanol treatment on disease resistance against anthracnose rot in postharvest loquat fruit. Scientia Horticulturae, 188, 115–121.CrossRefGoogle Scholar
  47. Xu H., & Chen, J. (2011) Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. Journal of the Science of Food and Agriculture, 91(6),1057–1063.CrossRefGoogle Scholar
  48. Zheng, Y.H., Guo, S.X., Jiu, L.Q., Yu L.S., & Fang, X.Y. (2000). Effect of high oxygen respiration rate, polyphenol oxidase activity and quality in postharvest loquat fruits. Plant. Physiol. Communications, 34, 318–320.Google Scholar
  49. Zheng, Y. H., Li, S. Y., & Xi, Y. F. (2000a). Changes of cell wall substances in relation to flesh woodiness in cold-stored loquat fruits. Acta Phytophysiol Sin, 26, 306–310.Google Scholar
  50. Zheng, Y. H., Li, S. Y., Xi, Y. F., Shu, X. G., & Yi, Y. B. (2000b). Polyamine changes and chilling injury in cold-stored loquat fruits. Acta Bot Sin, 42, 824–827.Google Scholar
  51. Zheng, Y. H., Cao, S. F., Ma, S. J., Yang, Z. F., & Li, N. (2005). Effects of 1-methylcyclopropene on internal browning and quality in cold-stored loquat fruit. In IX International Controlled Atmosphere Research Conference 857 (pp. 489–492).Google Scholar
  52. Zhang, Y., Jin, P., Huang, Y., Shan, T., Wang, L., Li, Y., & Zheng, Y. (2016). Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit. Postharvest Biology and Technology, 118, 141–147.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bisma Zargar
    • 1
  • Mohammad Maqbool Mir
    • 2
  • Shaiq Ahmad Ganai
    • 1
  • Shabir Ahmad Mir
    • 1
  • Manzoor Ahmad Shah
    • 3
  • Shafat Ahmad Banday
    • 4
  1. 1.Department of Food TechnologyIslamic University of Science and TechnologyAwantiporaIndia
  2. 2.Division of Fruit ScienceSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
  3. 3.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia
  4. 4.Division of Fruit ScienceSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirJammu and KashmirIndia

Personalised recommendations