Advertisement

Postharvest Biology and Technology of Quince

  • Toiba Majeed
  • Idrees Ahmed Wani
  • Sabeera Muzzaffar
Chapter

Abstract

Quince (Cydonia oblonga) is a species in the genus Cydonia, which belongs to the family Rosaceae. Quinces have received attention in the last 10 years because of their high content in biologically active phytochemicals. The harvesting time lasts from September to October, depending on the cultivar. The fruit can be stored at 0–2 °C for 3–6 months and prolonged by controlled atmosphere conditions. Various packaging techniques and chemical and heat treatments have been found to enhance the shelf life of quince fruit.

Keywords

Quince Maturity Astringent Controlled atmosphere 1-Methylcyclopropene 

References

  1. Abeles, F. B., Morgan, P. W., & Saltvelt, M. E., Jr. (1992). Ethylene in plant biology (2ndEd ed.). San Diego, CA: Academic Press.Google Scholar
  2. Akbari, H., & Ebrahimpour, H. (2014a). Potassium permanganate and packaging type impacts on post harvest quality and storage period of quince fruit (Cydonia oblonga Mill.) International Journal of Advanced Life Sciences, 7, 267–273.Google Scholar
  3. Akbari, H., & Ebrahimpour, H. (2014b). Interaction between potassium permanganate and heat treatment on quality and storability of Isfahan quince fruit (Cydonia oblonga Mill.) Indian Journal of Fundamental and Applied Life Sciences, 4(3), 2231–6345.Google Scholar
  4. An, D. S., & Lee, D. S. (2006). Effect of packaging conditions on the fruit quality of Chinese quince. Food Science and Biotechnology, 15(5), 683–687.Google Scholar
  5. Bíró, G. Y., & Lindner, K. (1999). Tápanyagtáblázat. Budapest: Medicina.Google Scholar
  6. Byrde, R. J. W., & Willetts, H. J. (2013). The brown rot fungi of fruit: Their biology and control, pp. 1–11.Google Scholar
  7. Carmen, B., Sumalan, R., & Renata, S. (2015). Studies on postharvest quality of some quince genotypes. Journal of Horticulture, Forestry and Biotechnology, 19(1), 193–196.Google Scholar
  8. El-Ramady, H. R., Szabolcsy, E. D., Abdalla, N. A., Taha, H. S., & Fari, M. (2015). Postharvest management of fruits and vegetable storage. Cham, Switzerland: Springer.CrossRefGoogle Scholar
  9. FAOSTAT. (2017). Food and Agriculture Organization of the United Nations (FAO). Statistics 2012. Retrieved January 19, 2012, from http://faostat.fao.org/site/339/default.aspx.
  10. Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C. I. G., Angioni, A., Dessi, S., et al. (2007). Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. Journal of Agricultural and Food Chemistry, 55, 963–969.CrossRefGoogle Scholar
  11. Gautier, M. (1984). Pear and Apple Storage: Practical Advice. Arboric. Fruit, 31, 34–38.Google Scholar
  12. Gunes, N. T. (2008). Ripening regulation during storage of quince (Cydonia oblonga Mill.) fruit. Acta Horticulturae, 796, 191–196.CrossRefGoogle Scholar
  13. Gunes, N. T. (2010). Effect of 1-MCP and different ecological conditions on postharvest quality of ‘eşme’ quince fruit during long term storage. ISHS Acta Horticulturae 877: VI International Postharvest Symposium. doi: 10.17660/ActaHortic.2010.877.50
  14. Hamauzu, Y., Yasui, H., Inno, T., Kume, C., & Omanyuda, M. (2005). Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. Journal of Agricultural and Food Chemistry, 53(4), 928–934.CrossRefGoogle Scholar
  15. Hamauzu, Y., Inno, T., Kume, C., Irie, M., & Hiramatsu, K. (2006). Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits. Journal of Agricultural and Food Chemistry, 54, 765–772.CrossRefGoogle Scholar
  16. Hegedus, A., Papp, N., & Stefanovits-Banyai, E. (2013). A review of nutritional value and putative health-effects of quince (Cydonia oblonga Mill.) fruit.Google Scholar
  17. Kader, A. A. (1999). Fruit maturity, ripening, and quality relationships. University of California, CA 95616. Acta Horticulturae 48:5.Google Scholar
  18. Karagul, S., & Gercekcioglu, R. (2016). The effects of different packaging types on fruit quality of quince (cv. Eşme) in modified atmosphere packaging. Journal of Applied Biological Sciences, 10(2), 21–25.Google Scholar
  19. KeLi, J. (1988). New, high quality and long storage-life apple variety—145. China Fruits, 2, 51.Google Scholar
  20. Khoubnasabjafari, M., & Jouyban, A. (2011). A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.) Journal of Medicinal Plants Research, 5(16), 3577–3594.Google Scholar
  21. Klein, J. D., & Lurie, S. (1992). Pre-storage heating of apple fruit for enhanced post harvest quality interaction of time and temperature. Horticulture Science, 27(4), 326–328.Google Scholar
  22. Kroca, R. W., & Hellickson, M. L. (1993). Energy savings in evaporator fan-cycles apple storages. Applied Engineering in Agriculture, 9, 533–560.Google Scholar
  23. Legua, P., Serrano, M., Melgarejo, P., Valero, D., Martınez, J. J., Martınez, R., and Hernandez, F. (2013). Quality Parameters, Biocompounds and Antioxidant Activity in Fruits of Nine Quince (Cydonia oblonga Miller) Accessions. Sci Hortic, 154, 61–65.CrossRefGoogle Scholar
  24. Leonel, M., Leonel, S., Tecchio, M. A., Mischan, M. M., & Xavier, D. (2016). Characteristics of quince fruit cultivars (Cydonia oblonga Mill.) grown in Brazil. Australian Journal of Crop Science, 10(5), 711–716.CrossRefGoogle Scholar
  25. Mannapperuma, J. D., Zagory, D., Singh, R. P., & Kader, A. A. (1989). Design of polymeric packages for modified atmosphere storage of fresh produce. In: Proceedings of the 5th International Controlled Atmosphere Research Conference, Vol. 2, Wenatchee, WA (pp. 225–233).Google Scholar
  26. Monka, A., Grygorieva, O., Chlebo, P., & Brindza, J. (2014). Morphological and antioxidant characteristics of quince (Cydonia oblonga Mill.) and chinese quince fruit (Pseudocydonia sinensisSchneid.).Potravinarstvo, 8(1), 333–340.Google Scholar
  27. Moradi, S., Saba, M. K., Mozafari, A. A., & Abdolahi, H. (2017). Physical and biochemical changes of some Iranian quince (Cydonia oblonga Mill) genotypes during cold storage. Journal of Agricultural Science and Technology, 19, 377–388.Google Scholar
  28. Moreira, R., Chenlo, F., Torres, M. D., & Vallejo, N. (2008). Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88, 514–521.CrossRefGoogle Scholar
  29. Nagahora, N., Ito, Y., & Nagasawa, T. (2013). Dietary Chinese quince polyphenols suppress generation of alpha-dicarbonyl compounds in diabetic KK-A(y) mice. Journal of Agricultural and Food Chemistry, 61(27), 6629–6635.CrossRefGoogle Scholar
  30. Nanos, G. D., Mpezou, A., & Georoudaki, T. (2015). Effects of 1-MCP and storage temperature on quince fruit quality. Acta Horticulturae, 1079.Google Scholar
  31. Pierson, C. F., Ceponis, M. J., & McColloch, L. P. (1971). Market diseases of apples, pears and quinces (pp. 14–16). Agricultural Research Service, United States Department of Agriculture, 376, Washington, DC.Google Scholar
  32. Rose, H., McColloch, L. P., & Fisher, D. F. (1951). Market diseases of fruits and vegetables: Apples. Pears and Quinces, 65.Google Scholar
  33. Sajid, S. M., Zubair, M., Waqas, M., Nawaz, M., & Ahmad, Z. (2015). A review on quince (Cydonia oblonga): A useful medicinal plant. Global Veterinaria, 14(4), 517–524.Google Scholar
  34. Sakaldas, M., Kaynas, K., & Dombaz, Y. (2010). Effects of 1-methylcyclopropene on fruit quality and biochemical properties of ‘Esme’ quince cultivar during long term storage. Acta Horticulturae, 876.Google Scholar
  35. Sharma, R., Joshi, V. K., & Rana, J. C. (2011). Nutritional composition and processed products of quince (Cydonia oblonga Mill.) Indian Journal of Natural Products and Resources, 2(3), 354–357.Google Scholar
  36. Silva, B. M., Andrade, P. B., Mendes, G. C., Seabra, R. M., & Ferreira, M. A. (2002). Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. Journal of Agricultural and Food Chemistry, 50, 2313–2317.CrossRefGoogle Scholar
  37. Silva, B. M., Andrade, P. B., Martins, R. C., Valentao, P., Ferreres, F., Seabra, R. M., & Ferreira, M. A. (2005a). Quince (Cydonia oblonga Miller) fruit characterization using principal component analysis. Journal of Agricultural and Food Chemistry, 53, 111–122.CrossRefGoogle Scholar
  38. Silva, B. M., Andrade, P. B., Ferreres, F., Seabra, R. M., Oliveira, M. B., & Ferrira, M. A. (2005b). Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids. Natural Product Research, 19(3), 275–281.CrossRefGoogle Scholar
  39. Silva, B. M., Andrade, P. B., Martins, R. C., Seabra, R. M., & Ferreira, M. A. (2006). Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam. Food Chemistry, 94, 504–512.CrossRefGoogle Scholar
  40. Souci, S. W., Fachmann, W., & Kraut, H. (2008). Food composition and nutrition tables. London: Taylor and Francis.Google Scholar
  41. Swindeman, A. M. (2002). Fruit packaging and storage loss prevention guidelines. Wenatchee, WA: Washington State University Tree Fruit Research and Extension Centre.Google Scholar
  42. Tatari, M., & Mousavi, A. (2017). Impact of harvesting time and length of cold storage period on physiological and quality traits of four quince genotypes (Cydonia oblonga Mill.) Journal of Horticultural Research, 25(1), 67–79.CrossRefGoogle Scholar
  43. Tuna-Gunes, N., & Koksal, A. I. (2005). Ethylene biosynthesis of quince during storage. Acta Horticulturae, 682, 177–184.CrossRefGoogle Scholar
  44. Vila, R., Granados, M. V., Hellín, P., Kauppinen, S., Laencina, J., Rumpunen, K., & Ros, J. M. (2003). Biochemical changes in chaenomeles fruits and fruit juice during ripening and storage. In K. Rumpunen (Ed.), Japanese quince: Potential fruit crop for Northern Europe (pp. 159–168).Google Scholar
  45. Walker, J. C. (1957). Plant pathology. Ed. 2, 707 pp., illus. New York and London.Google Scholar
  46. WFLO. (2008). Is indebted to Dr. Adel A. Kader, Department of Plant Sciences, University of California at Davis.Google Scholar
  47. Whetzel, H. H. (1917). Manual of fruit diseases. 462 pp., illus. New York.Google Scholar
  48. Wojdyło, A., Oszmianski, J., & Bielicki, P. (2013). Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. Journal of Agricultural and Food Chemistry, 61, 2762–2772.CrossRefGoogle Scholar
  49. Yehoshua, S. B., Beaudry, R. M., Fishman, S., Jayanty, S., & Mir, N. (2005). Modified atmospheric packaging and controlled atmospheric storage. In S. Ben-yehoshua (Ed.), Environmentally friendly technologies for agricultural produce quality (pp. 61–100). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  50. Yurdugul, S. (2005). Preservation of quinces by the combination of an edible coating material, Semperfresh, ascorbic acid and cold storage. European Food Research Technology, 220, 579–586.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Toiba Majeed
    • 1
  • Idrees Ahmed Wani
    • 1
  • Sabeera Muzzaffar
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of KashmirSrinagarIndia

Personalised recommendations