Skip to main content

Hepatic Encephalopathy: Pathophysiology—Brain

  • Chapter
  • First Online:
Diagnosis and Management of Hepatic Encephalopathy

Abstract

In liver disease, a number of systemic pathogenic factors are responsible for the onset and progression of hepatic encephalopathy. A reduced capacity of the liver to clear gut-derived ammonia leads to an increase in blood ammonia and neurotoxicity. Portal-systemic shunting as well as a reduction in muscle quality and/or muscle mass loss further increase the risk of developing hyperammonemia. Systemic oxidative stress and inflammation together with hyperammonemia can trigger cognitive decline. These factors can cross the blood-brain barrier and affect the brain directly or alter the permeability and signaling across the blood-brain barrier. Long considered a reversible disorder, there is ample amount of evidence demonstrating that repeated episodes of overt HE can prompt neuronal cell injury/death leading to irreversibility. This chapter describes a patient who embarks on the continuum of HE, describing precipitating factors involved in the pathogenesis of cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olde Damink SWM, Deutz NEP, Dejong CHC, et al. Interorgan ammonia metabolism in liver failure. Neurochem Int. 2002;41:177–88.

    Article  CAS  PubMed  Google Scholar 

  2. Sokollik C, Bandsma RHJ, Gana JC, et al. Congenital portosystemic shunt: characterization of a multisystem disease. J Pediatr Gastroenterol Nutr. 2013;56:675–81. https://doi.org/10.1097/MPG.0b013e31828b3750.

    Article  PubMed  Google Scholar 

  3. Pereira K, Carrion AF, Martin P, et al. Current diagnosis and management of post-transjugular intrahepatic portosystemic shunt refractory hepatic encephalopathy. Liver Int. 2015;35:2487–94. https://doi.org/10.1111/liv.12956.

    Article  PubMed  Google Scholar 

  4. He Y, Hakvoort TBM, Vermeulen JLM, et al. Glutamine synthetase deficiency in murine astrocytes results in neonatal death. Glia. 2010;58:741–54. https://doi.org/10.1002/glia.20960.

    Article  PubMed  Google Scholar 

  5. Chatauret N, Desjardins P, Zwingmann C, et al. Direct molecular and spectroscopic evidence for increased ammonia removal capacity of skeletal muscle in acute liver failure. J Hepatol. 2006;44:1083–8. https://doi.org/10.1016/j.jhep.2005.11.048.

    Article  PubMed  CAS  Google Scholar 

  6. Merli M, Giusto M, Lucidi C, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28:281–4. https://doi.org/10.1007/s11011-012-9365-z.

    Article  PubMed  CAS  Google Scholar 

  7. Montano-Loza AJ, Angulo P, Meza-Junco J, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7:126–35. https://doi.org/10.1002/jcsm.12039.

    Article  PubMed  Google Scholar 

  8. Nagaraja TN, Brookes N. Intracellular acidification induced by passive and active transport of ammonium ions in astrocytes. Am J Phys. 1998;274:C883–91.

    Article  CAS  Google Scholar 

  9. Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab Brain Dis. 2009;24:95–102. https://doi.org/10.1007/s11011-008-9112-7.

    Article  PubMed  CAS  Google Scholar 

  10. Allert N, Köller H, Siebler M. Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res. 1998;782:261–70.

    Article  CAS  PubMed  Google Scholar 

  11. Cooper AJ, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987;67:440–519.

    Article  CAS  PubMed  Google Scholar 

  12. Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67:259–79. https://doi.org/10.1016/S0301-0082(02)00019-9.

    Article  PubMed  CAS  Google Scholar 

  13. Sawhney R, Holland-Fischer P, Rosselli M, et al. Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients. Liver Transpl. 2016;22:732–42. https://doi.org/10.1002/lt.24443.

    Article  PubMed  Google Scholar 

  14. Davuluri G, Allawy A, Thapaliya S, et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol. 2016;594:7341–60. https://doi.org/10.1113/JP272796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci. 2013;14:851–8. https://doi.org/10.1038/nrn3587.

    Article  PubMed  CAS  Google Scholar 

  16. Butterworth RF. Neurosteroids in hepatic encephalopathy: novel insights and new therapeutic opportunities. J Steroid Biochem Mol Biol. 2016;160:94–7. https://doi.org/10.1016/j.jsbmb.2015.11.006.

    Article  PubMed  CAS  Google Scholar 

  17. Görg B, Morwinsky A, Keitel V, et al. Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia. 2010a;58:691–705. https://doi.org/10.1002/glia.20955.

    Article  PubMed  Google Scholar 

  18. Shah NJ, Neeb H, Kircheis G, et al. Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage. 2008;41:706–17. https://doi.org/10.1016/j.neuroimage.2008.02.057.

    Article  PubMed  CAS  Google Scholar 

  19. Wright G, Soper R, Brooks HF, et al. Role of aquaporin-4 in the development of brain oedema in liver failure. J Hepatol. 2010;53:91–7. https://doi.org/10.1016/j.jhep.2010.02.020.

    Article  PubMed  CAS  Google Scholar 

  20. Bosoi CR, Zwingmann C, Marin H, et al. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol. 2014b;60:554–60. https://doi.org/10.1016/j.jhep.2013.10.011.

    Article  PubMed  CAS  Google Scholar 

  21. Hadjihambi A, De Chiara F, Hosford PS, et al. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology. 2017;65:1306–18. https://doi.org/10.1002/hep.29031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sofroniew MV. Astrocyte failure as a cause of CNS dysfunction. Mol Psychiatry. 2000;5:230–2.

    Article  CAS  PubMed  Google Scholar 

  23. Bosoi CR, Rose CF. Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int. 2013a;62:446–57. https://doi.org/10.1016/j.neuint.2013.01.015.

    Article  PubMed  CAS  Google Scholar 

  24. Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol. 2015;5:S7–S20. https://doi.org/10.1016/j.jceh.2014.06.004.

    Article  PubMed  Google Scholar 

  25. Gimenez-Garzó C, Urios A, Agustí A, et al. Is cognitive impairment in cirrhotic patients due to increased peroxynitrite and oxidative stress? Antioxid Redox Signal. 2015;22:871–7. https://doi.org/10.1089/ars.2014.6240.

    Article  PubMed  CAS  Google Scholar 

  26. Bosoi CR, Rose CF. Oxidative stress: a systemic factor implicated in the pathogenesis of hepatic encephalopathy. Metab Brain Dis. 2013b;28:175–8. https://doi.org/10.1007/s11011-012-9351-5.

    Article  PubMed  CAS  Google Scholar 

  27. Coltart I, Tranah TH, Shawcross DL. Inflammation and hepatic encephalopathy. Arch Biochem Biophys. 2013;536:189–96. https://doi.org/10.1016/j.abb.2013.03.016.

    Article  PubMed  CAS  Google Scholar 

  28. Chen MF, Mo LR, Lin RC, et al. Increase of resting levels of superoxide anion in the whole blood of patients with decompensated liver cirrhosis. Free Radic Biol Med. 1997;23:672–9. https://doi.org/10.1016/S0891-5849(97)00057-9.

    Article  PubMed  CAS  Google Scholar 

  29. de Vries HE, Blom-Roosemalen MC, van Oosten M, et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996;64:37–43.

    Article  PubMed  Google Scholar 

  30. Didier N, Romero IA, Créminon C, et al. Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J Neurochem. 2003;86:246–54.

    Article  CAS  PubMed  Google Scholar 

  31. Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40:247–54. https://doi.org/10.1016/j.jhep.2003.10.016.

    Article  PubMed  CAS  Google Scholar 

  32. Odeh M, Sabo E, Srugo I, Oliven A. Relationship between tumor necrosis factor-alpha and ammonia in patients with hepatic encephalopathy due to chronic liver failure. Ann Med. 2005;37:603–12. https://doi.org/10.1080/07853890500317414.

    Article  PubMed  CAS  Google Scholar 

  33. Shawcross DL, Sharifi Y, Canavan JB, et al. Infection and systemic inflammation, not ammonia, are associated with Grade 3/4 hepatic encephalopathy, but not mortality in cirrhosis. J Hepatol. 2011;54:640–9.

    Article  CAS  PubMed  Google Scholar 

  34. Montoliu C, Cauli O, Urios A, et al. 3-Nitro-tyrosine as a peripheral biomarker of minimal hepatic encephalopathy in patients with liver cirrhosis. Am J Gastroenterol. 2011;106:1629–37. https://doi.org/10.1038/ajg.2011.123.

    Article  PubMed  CAS  Google Scholar 

  35. Bosoi CR, Parent-Robitaille C, Anderson K, et al. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile-duct ligated rats. Hepatology. 2011;53:1995–2002. https://doi.org/10.1002/hep.24273.

    Article  PubMed  CAS  Google Scholar 

  36. Bosoi CR, Yang X, Huynh J, et al. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med. 2012;52:1228–35. https://doi.org/10.1016/j.freeradbiomed.2012.01.006.

    Article  PubMed  CAS  Google Scholar 

  37. Bosoi CR, Tremblay M, Rose CF. Induction of systemic oxidative stress leads to brain oedema in portacaval shunted rats. Liver Int. 2014a;34:1322–9. https://doi.org/10.1111/liv.12414.

    Article  PubMed  CAS  Google Scholar 

  38. Marini JC, Broussard SR. Hyperammonemia increases sensitivity to LPS. Mol Genet Metab. 2006;88:131–7. https://doi.org/10.1016/j.ymgme.2005.12.013.

    Article  PubMed  CAS  Google Scholar 

  39. Rama Rao KV, Jayakumar AR, Norenberg MD. Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int. 2005;47:31–8. https://doi.org/10.1016/j.neuint.2005.04.004.

    Article  PubMed  CAS  Google Scholar 

  40. Görg B, Qvartskhava N, Bidmon H-J, et al. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology. 2010b;52:256–65. https://doi.org/10.1002/hep.23656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zemtsova I, Görg B, Keitel V, et al. Microglia activation in hepatic encephalopathy in rats and humans. Hepatology. 2011;54:204–15. https://doi.org/10.1002/hep.24326.

    Article  PubMed  CAS  Google Scholar 

  42. Rodrigo R, Cauli O, Gomez-Pinedo U, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139:675–84. https://doi.org/10.1053/j.gastro.2010.03.040.

    Article  PubMed  CAS  Google Scholar 

  43. Planas R, Ballesté B, Alvarez MA, et al. Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. J Hepatol. 2004;40:823–30. https://doi.org/10.1016/j.jhep.2004.01.005.

    Article  PubMed  Google Scholar 

  44. Dhar R, Young GB, Marotta P. Perioperative neurological complications after liver transplantation are best predicted by pre-transplant hepatic encephalopathy. Neurocrit Care. 2008;8:253–8. https://doi.org/10.1007/s12028-007-9020-4.

    Article  PubMed  Google Scholar 

  45. Sotil EU, Gottstein J, Ayala E, et al. Impact of preoperative overt hepatic encephalopathy on neurocognitive function after liver transplantation. Liver Transplant. 2009;15:184–92. https://doi.org/10.1002/lt.21593.

    Article  Google Scholar 

  46. Campagna F, Biancardi A, Cillo U, et al. Neurocognitive-neurological complications of liver transplantation: a review. Metab Brain Dis. 2010;25:115–24. https://doi.org/10.1007/s11011-010-9183-0.

    Article  PubMed  Google Scholar 

  47. Garcia-Martinez R, Rovira A, Alonso J, et al. Hepatic encephalopathy is associated with posttransplant cognitive function and brain volume. Liver Transpl. 2011;17:38–46. https://doi.org/10.1002/lt.22197.

    Article  PubMed  Google Scholar 

  48. Tryc AB, Pflugrad H, Goldbecker A, et al. New-onset cognitive dysfunction impairs the quality of life in patients after liver transplantation. Liver Transpl. 2014;20:807–14. https://doi.org/10.1002/lt.23887.

    Article  PubMed  Google Scholar 

  49. Brandman D, Biggins SW, Hameed B, et al. Pretransplant severe hepatic encephalopathy, peritransplant sodium and post-liver transplantation morbidity and mortality. Liver Int. 2012;32:158–64. https://doi.org/10.1111/j.1478-3231.2011.02618.x.

    Article  PubMed  CAS  Google Scholar 

  50. Acharya C, Wade JB, Fagan A, et al. Overt hepatic encephalopathy impairs learning on the EncephalApp stroop which is reversible after liver transplantation. Liver Transpl. 2017;23:1396–403. https://doi.org/10.1002/lt.24864.

    Article  PubMed  Google Scholar 

  51. Bajaj JS, Schubert CM, Heuman DM, et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology. 2010;138:2332–40. https://doi.org/10.1053/j.gastro.2010.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Riggio O, Ridola L, Pasquale C, et al. Evidence of persistent cognitive impairment after resolution of overt hepatic encephalopathy. Clin Gastroenterol Hepatol. 2011;9:181–3. https://doi.org/10.1016/j.cgh.2010.10.002.

    Article  PubMed  Google Scholar 

  53. Nardelli S, Allampati S, Riggio O, et al. Hepatic encephalopathy is associated with persistent learning impairments despite adequate medical treatment: a multicenter, international study. Dig Dis Sci. 2017;62:794–800. https://doi.org/10.1007/s10620-016-4425-6.

    Article  PubMed  Google Scholar 

  54. Matsusue E, Kinoshita T, Ohama E, Ogawa T. Cerebral cortical and white matter lesions in chronic hepatic encephalopathy: MR-pathologic correlations. Am J Neuroradiol. 2005;26:347–51.

    PubMed  Google Scholar 

  55. Zeneroli ML, Cioni G, Vezzelli C, et al. Prevalence of brain atrophy in liver cirrhosis patients with chronic persistent encephalopathy: evaluation by computed tomography. J Hepatol. 1987;4:283–92.

    Article  CAS  PubMed  Google Scholar 

  56. García-Lezana T, Oria M, Romero-Giménez J, et al. Cerebellar neurodegeneration in a new rat model of episodic hepatic encephalopathy. J Cereb Blood Flow Metab. 2017;37:927–37. https://doi.org/10.1177/0271678X16649196.

    Article  PubMed  Google Scholar 

  57. Görg B, Karababa A, Shafigullina A, et al. Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Glia. 2015;63:37–50. https://doi.org/10.1002/glia.22731.

    Article  PubMed  Google Scholar 

  58. Senzolo M, Marco S, Ferronato C, et al. Neurologic complications after solid organ transplantation. Transpl Int. 2009;22:269–78. https://doi.org/10.1111/j.1432-2277.2008.00780.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Rose Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bissonnette, J., Rose, C.F. (2018). Hepatic Encephalopathy: Pathophysiology—Brain. In: Bajaj, J. (eds) Diagnosis and Management of Hepatic Encephalopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-76798-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76798-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76797-0

  • Online ISBN: 978-3-319-76798-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics