Insect Innate Immune Memory

  • Humberto Lanz-MendozaEmail author
  • Jorge Contreras Garduño


Recent years have seen a surge in studies on insect immune memory. Here we provide an overview of the current state of evidence for immune memory mechanisms in insects. This group of animals is very heterogeneous, and understanding of the molecular mechanisms behind immune memory remains fragmentary. We discuss the role of DNA synthesis and endoreplication as a basis for retaining information gathered from previous contacts with pathogens and novel mechanisms to confront different pathogenic challenges. Finally, we discuss the ecological perspective of insect immune memory.


Immune memory Priming DNA synthesis Endoreplication Notch pathway Delta Hindsight Antiviral response Insects Memory mechanisms 



To Prof. Edwin L. Cooper for his kind invitation. One anonymous reviewer and E. Cooper provided substantial comments that improved somewhat initially this chapter. JCG received grants from CONACYT (Laboratorios nacionales 2017-280505) and UNAM (PAPIT IA205318).

Glossary: Key Definitions Regarding Immune Priming Theory


A challenge that activates the immune response and that may favor host molecule recognition.

Immune priming:

Host-improved protection in terms of immune response, parasite elimination, and survival after been able to respond to a parasite, pathogen, or immune challenge following a first specific exposure; recognized within and across generations.

Immune enhancement or enhanced protection:

A condition where an immune response is activated by artificial methods such as adding probiotics or exposure to nonharming immune-stimulant molecules, rendering an immune response over the physiological levels or keeping pathogens at bay (microbiota effect on many pathogens) but without exhibiting specificity and memory. This may occur within and across generations, and the protection against a second challenge after a first challenge could be due to a sustained immune response or an unspecific biphasic response.


In invertebrate biology, it is difficult to determine specificity against an epitope of a given antigen. However, many molecules recognize molecular patterns such as Scavenger receptors, Toll-like receptors, and Nod-like receptors (NLRs), which bind and transduce specific signals to molecules present in pathogens without exhibiting high specificity as vertebrate immunoglobulins. At a functional level, immune protection should occur, for example, in homologous (similar) challenges with the same parasite or pathogen species or strains rather than in heterologous (dissimilar) challenges. This means that the secondary response should only be elicited by homologous challenges or should be stronger and faster than heterologous challenges.

Nonspecific immune response:

Humoral and cellular responses not directly linked to a given pathogen’s structure. For example, a first challenge with a fungus may protect against Gram-positive bacteria, nematodes, or yeasts.


  1. Barribeau SM, Schmid-Hempel P, Sadd BM (2016) Royal decree: gene expression in trans-generationally immune primed bumblebee workers mimics a primary immune response. PLoS One 11:e0159635PubMedPubMedCentralGoogle Scholar
  2. Bolte S, Roth O, Philipp EE, Saphörster J, Rosenstiel P, Reusch TB (2013) Specific immune priming in the invasive ctenophore Mnemiopsis leidyi. Biol Lett 9:20130864PubMedPubMedCentralGoogle Scholar
  3. Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237:232–235PubMedGoogle Scholar
  4. Buonocore F, Gerdol M (2016) Alternative adaptive immunity strategies: coelacanth, cod and shark immunity. Mol Immunol 69:157–169PubMedGoogle Scholar
  5. Brehélin M, Roch P (2008) Specificity, learning and memory in the innate immune response. Inv Surv J 5:103–109Google Scholar
  6. Boraschi D, Italiani P (2018) Innate immune memory: time for adopting a correct terminology. Front Immunol 9:799PubMedPubMedCentralGoogle Scholar
  7. Cadavid LF (2009) La evolución de sistemas complejos: el caso del sistema inmune en animales. Acta Biol Colomb 14(S):247–254Google Scholar
  8. Castro-Vargas C, Linares-López C, López-Torres A, Wrobel K, Torres-Guzmán JC, Hernández GA, Wrobel K, Lanz-Mendoza H, Contreras-Garduño J (2017) Methylation on RNA: a potential mechanism related to immune priming within but not across generations. Front Microbiol 8:473PubMedPubMedCentralGoogle Scholar
  9. Christofi T, Apidianakis Y (2013) Drosophila immune priming against Pseudomonas aeruginosa is short-lasting and depends on cellular and humoral immunity. F1000Research 2:1–13Google Scholar
  10. Cong M, Song L, Wang L, Zhao J, Qiu L, Li L, Zhang H (2008) The enhanced immune protection of Zhikong scallop Chlamys farreri on the secondary encounter with Listonella anguillarum. Comp Biochem Physiol B: Biochem Mol Biol 151(2):191–196Google Scholar
  11. Contreras-Garduño J, Rodríguez MC, Hernández-Martínez S, Martínez-Barnetche J, Alvarado-Delgado A, Izquierdo J, Herrera-Ortiz A, Moreno-García M, Velazquez-Meza ME, Valverde V, Argotte-Ramos R, Rodríguez MH, Lanz-Mendoza H (2015) Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection. Dev Comp Immunol 52:172–181PubMedGoogle Scholar
  12. Cooper EL (1992) Overview of immunoevolution. Bolletino di Zoologia 59:119–128Google Scholar
  13. Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris. Kinetics and characteristics. Transplantation 41:514–520PubMedGoogle Scholar
  14. Cooper EL (2016) Commentary: blurring borders: innate immunity with adaptive features. Front Microbiol 7:358PubMedPubMedCentralGoogle Scholar
  15. Chigasaki J (1925) Sur l’immunisation de Galleria aux differents stades de sa vie. Compt Rend Soc Biol 93:573–574Google Scholar
  16. Contreras-Garduño J, Rodríguez MC, Rodrígue MH, Alvarado-Delgado A, Lanz-Mendoza H (2014) Cost of immune priming within generations:trade-off between infection and reproduction. Mic Infec 16:261–267Google Scholar
  17. Contreras-Garduño J, Lanz-mendoza H, Franco B, Nava A, Pedraza-Reyes M, JorgecanaleS-Lazcano (2016) Insect immune priming: ecology and experimental evidences. Ecol Entomol 41(4):351–366Google Scholar
  18. Dhinaut J, Chogne M, Moret Y (2018) Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J Anim Ecol 87:448–463PubMedGoogle Scholar
  19. Dubovskiy IM, Whitten MMA, Yaroslavtseva ON, Greig C, Kryukov VY, Kryukov VY, Grizanova EV, Mukherjee K, Vilcinskas A, Glupov VV (2013) Can insects develop resistance to insect pathogenic fungi? PLoS One 8:e60248PubMedPubMedCentralGoogle Scholar
  20. Dubuffet A, Zanchi C, Boutet G, Moreau J, Teixeira M, Moret Y (2015) Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog 11(10):e1005178PubMedPubMedCentralGoogle Scholar
  21. Duneau D, Ebert D, Du Pasquier L (2016) Infections by Pasteuria do not protect its natural host Daphnia magna from subsequent infections. Dev Comp Immunol 57:120–125PubMedGoogle Scholar
  22. Edgar BA, Zielke N, Gutierrez C (2014) Endocycles: a recurrent evolutionary innovation for pst-mitotic cell growth. Nat Rev Mol Cell Biol 15:197–210PubMedGoogle Scholar
  23. Eggert H, Kurtz J, Diddens-de Buhr MF (2014) Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring. Proc R Soc B Biol Sci 281:20142089Google Scholar
  24. Eggert H, Diddens-de Buhr MF, Kurtz J (2015) A temperature shock can lead to trans-generational immune priming in the Red Flour Beetle, Tribolium castaneum. Ecol Evol 5:1318–1326PubMedPubMedCentralGoogle Scholar
  25. Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10:781–784PubMedGoogle Scholar
  26. Faulhaber LM, Karp RD (1992) A diphasic immune response against bacteria in the American cockroach. Immunology 75:378–381PubMedPubMedCentralGoogle Scholar
  27. Fisher JJ, Hajek AE (2015) Maternal exposure of a beetle to pathogens protects offspring against fungal disease. PLoS One 10:e0125197PubMedPubMedCentralGoogle Scholar
  28. Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A (2014) The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5:547–554PubMedPubMedCentralGoogle Scholar
  29. Futo M, Armitage SA, Kurtz J (2016) Microbiota plays a role in oral immune priming in Tribolium castaneum. Front Microbiol 6:1383PubMedPubMedCentralGoogle Scholar
  30. Gálvez D, Chapuisat M (2014) Immune priming and pathogen resistance in ant queens. Ecol Evol 4(10):1761–1767PubMedPubMedCentralGoogle Scholar
  31. Garbutt JS, O'Donoghue AJ, McTaggart SJ, Wilson PJ, Little TJ (2014) The development of pathogen resistance in Daphnia magna: implications for disease spread in age-structured populations. J Exp Biol 217:3929–3934PubMedPubMedCentralGoogle Scholar
  32. Gomez HM, Rivas GA, Hernández-Quintero A, Hernández AG, Guzmán JCT, Mendoza HL, Contreras-Garduño J (2018) The occurrence of immune priming can be species-specific in entomopathogens. Microb Pathog 118:361–364Google Scholar
  33. Green TJ, Helbig K, Speck P, Raftos DA (2016) Primed for success: oyster parents treated with poly (I: C) produce offspring with enhanced protection against Ostreid herpesvirus type I infection. Mol Immunol 78:113–120PubMedGoogle Scholar
  34. Greenwood JM, Milutinović B, Peuß R, Behrens S, Esser D, Rosenstiel P, Kennedy M, Kurtz J (2017) Oral immune priming with bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. BMC Genomics 18:329PubMedPubMedCentralGoogle Scholar
  35. Hartman RS, Karp RD (1989) Short-term immunological memory in the allograft response of the american cockroach, Periplaneta americana. Transplantation 47:920–922PubMedGoogle Scholar
  36. Hauton C, Smith VJ (2007) Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. BioEssays 29:1138–1146PubMedPubMedCentralGoogle Scholar
  37. Hernández-López J, Schuehly W, Crailsheim K, Riessberger-Gallé U (2014) Trans-generationalimmune priming in honeybees. Proc R Soc B Biol Sci 281:20140454Google Scholar
  38. Hernández-Martínez S, Román-Martínez U, Martínez-Bartneche J, Rodríguez M, Lanz-Mendoza H (2006) Induction of DNA synthesis in Anopheles albimanus tissue cultures by Saccharomyces cerevisiae. Arch. Insect Biochem Physiol 63:147–158PubMedGoogle Scholar
  39. Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferré J, Herrero S Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ Microbiol:no–noGoogle Scholar
  40. Hildemann WH, Raison RL, Cheung G, Hull CJ, Akaka L, Okamoto J (1977) Immunological specificity and memory in a scleractinian coral. Nature 270:219–223PubMedGoogle Scholar
  41. Herrin BR, Cooper MD (2010) Alternative adaptive immunity in jawless vertebrates. J Immunol 185:1367–1374PubMedGoogle Scholar
  42. Heitmueller M, Billion A, Dobrindt U, Vilcinskas A, Mukherjee K (2017) Epigenetic mechanisms regulate innate immunity against uropathogenic and commensal-like Escherichia coli in the surrogate insect model Galleria mellonella. Infect Immun 85(10):e00336–e00317PubMedPubMedCentralGoogle Scholar
  43. Karp RD (1990) Cell-mediated immunity in invertebrates. Bioscience 40:732–737Google Scholar
  44. Khan I, Prakash A, Agashe D (2016) Divergent immune priming responses across flour beetle life stages and populations. Ecol Evol 6:7847–7855PubMedPubMedCentralGoogle Scholar
  45. Khan I, Prakash A, Agashe D (2017) Experimental evolution of insect immune memory versus pathogen resistance. Proc R Soc B 2017 284 20171583Google Scholar
  46. Kurtz J (2005) Specific memory within innate immune systems. Trends Immunol 26(4):186–192PubMedGoogle Scholar
  47. Kurtz J, Armitage SA (2017) Dissecting the dynamics of trans-generational immune priming. Mol Ecol 26:3857–3859PubMedGoogle Scholar
  48. Kurtz J, Franz K (2003) Innate defense: evidence for memory in invertebrate immunity. Nature 425:37–38PubMedGoogle Scholar
  49. Lackie AM (1983) Immunological recognition of cuticular transplants in insects. Dev Comp Immunol 7:41–50PubMedGoogle Scholar
  50. Lafont M, Petton B, Vergnes A, Pauletto M, Segarra A, Gourbal B, Montagnani C (2017) Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci Rep 7:13143PubMedPubMedCentralGoogle Scholar
  51. Lin YC, Chen JC, Morni WZ, Putra DF, Huang CL, Li CC, Hsieh JF (2013) Vaccination enhances early immune responses in white shrimp Litopenaeus vannamei after secondary exposure to Vibrio alginolyticus. PLoS One 8:e69722PubMedPubMedCentralGoogle Scholar
  52. Little TJ, Colegrave N, Sadd BM, Schmid-Hempel P (2008) Studying immunity at the whole organism level. BioEssays 30(4):404–405PubMedGoogle Scholar
  53. Little TJ, Kraaijeveld AR (2004) Ecological and evolutionary implications of immunological priming in invertebrates. Trends Ecol Evol 19:58–60PubMedGoogle Scholar
  54. Little TJ, O’Connor B, Colegrave N, Watt K, Read AF (2003) Maternal transfer of strain-speci c immunity in an invertebrate. Curr Biol 13:489–492PubMedGoogle Scholar
  55. Longdon B, Cao C, Martinez J, Jiggins FM (2013) Previous exposure to an RNA virus does not protect against subsequent infection in Drosophila melanogaster. PLoS One 8(9):e73833PubMedPubMedCentralGoogle Scholar
  56. Masri L, Cremer S (2014) Individual and social immunisation in insects. Trends Immunol 35(10):471–482PubMedGoogle Scholar
  57. McNamara KB, Lieshout E, Simmons LW (2014) The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. J Evol Biol 27:1020–1028PubMedGoogle Scholar
  58. McTaggart SJ, Wilson PJ, Little TJ (2012) Daphnia magna shows reduced infection upon secondary exposure to a pathogen. Biol Lett 8:972–975PubMedPubMedCentralGoogle Scholar
  59. Metalnikow S (1920) Immunité naturelle ou acquise des chenilles de Galleria mellonella. CR Acad Sci Paris 83:817–820Google Scholar
  60. Mikonranta L, Mappes J, Kaukoniitty M, Freitak D (2014) Insect immunity: oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front Zool 11:23PubMedPubMedCentralGoogle Scholar
  61. Milutinovic B, Kurtz J (2016) Immune memory in invertebrates. Semin Immunol 28:328–342PubMedGoogle Scholar
  62. Milutinović B, Fritzlar S, Kurtz J (2014) Increased survival in the red flour beetle after oral priming with bacteria-conditioned media. J Innate Immun 6:306–314PubMedGoogle Scholar
  63. Miyashita A, Kizaki H, Kawasaki K, Sekimizu K, Kaito C (2014) Primed immune responses to gram-negative peptidoglycans confer infection resistance in silkworms. J Biol Chem 289:14412–14421PubMedPubMedCentralGoogle Scholar
  64. Moreno-García M, Vargas V, Ramírez-Bello I, Hernández-Martínez G, Lanz-Mendoza H (2015) Bacterial exposure at the larval stage induced sexual immune dimorphism and priming in adult Aedes aegypti mosquitoes. PLoS One 10(7):e0133240PubMedPubMedCentralGoogle Scholar
  65. Moret Y (2006) Trans-generational immune priming: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc R Soc Lond Ser B 273:1399–1405Google Scholar
  66. Mukherjee K, Grizanova E, Chertkova E, Lehmann R, Dubovskiy I, Vilcinskas A (2017) Experimental evolution of resistance against in the insect model host results in epigenetic modifications. Virulence 8(8):1618–1630PubMedPubMedCentralGoogle Scholar
  67. Netea MG, Quintin J, van der Meer JWM (2011) Trained immunity:a memory for innate host defense. Cell Host Microbe 9(5):355–361PubMedGoogle Scholar
  68. Netea MG, van der Meer JW (2017) Trained immunity: an ancient way of remembering. Cell Host Microbe 21:297–300PubMedGoogle Scholar
  69. Ng TH, Hung HY, Chiang YA, Lin JH, Chen YN, Chuang YC, Wang HC (2014) WSSV-induced crayfish Dscam shows durable immune behavior. Fish Shellfish Immunol 40:78–90PubMedGoogle Scholar
  70. Norouzitallab P, Baruah K, Vandegehuchte M, Van Stappen G, Catania F, Bussche JV, Sorgeloos P, Bossier P (2014) Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model. FASEB J 28:3552–3563PubMedGoogle Scholar
  71. Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12(6):500–508PubMedGoogle Scholar
  72. Pham LN, Schneider DS (2008) Evidence for specificity and memory in the insect innate immune response. In: Beckage N (ed) Insect immunology. Elsevier AP, London, pp 120–121Google Scholar
  73. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3(3):e26. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pope EC, Powell A, Roberts EC, Shields RJ, Wardle R, Rowley AF (2011) Enhanced cellular immunity in shrimp (Litopenaeus vannamei) after vaccination. PLoS One 6:e20960PubMedPubMedCentralGoogle Scholar
  75. Portela J, Duval D, Rognon A, Galinier R, Boissier J, Coustau C, Mitta G, Théron A, Gourbal B (2013) Evidence for specific genotype-dependet immune priming in the Lophotrochozoan Biomphalaria glabrata snail. J Innate Immun 5:261–276PubMedGoogle Scholar
  76. Pradeu T, Du Pasquier L (2018) Immunological memory: What’s in a name? Immunol Rev 283:7–20PubMedGoogle Scholar
  77. Ramirez J, Garver LS, Brayner FA, Alves LC, Rodrigues J, Molina-Cruz A et al (2014) The role of hemocytes in Anopheles gambiae antiplasmodial immunity. J Innate Immun 6:119–128PubMedGoogle Scholar
  78. Ramirez JL, de Almeida Oliveira G, Calvo E, Dalli J, Colas RA, Serhan CN (2015) A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae. Nat Commun 6:7403PubMedPubMedCentralGoogle Scholar
  79. Reber A, Chapuisat M (2012) No evidence for immune priming in ants exposed to a fungal pathogen. PLoS One 7:e35372PubMedPubMedCentralGoogle Scholar
  80. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355PubMedPubMedCentralGoogle Scholar
  81. Rosengaus RB, Malak T, MacKintosh C (2013) Immune-priming in ant larvae: social immunity does not undermine individual immunity. Biol Lett 9:20130563PubMedPubMedCentralGoogle Scholar
  82. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J (2009) Strain-specific immune priming in the red flour beetle, Tribolium castaneum. Proc R Soc Lond Ser B 276:145–151Google Scholar
  83. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, Kurtz J (2010) Paternally derived immune priming for offspring in the red flour beetle. J Anim Ecol 79(2):403–413PubMedGoogle Scholar
  84. Ruppert EE, Barnes RD (1996) Zoología de los invertebrados. McGraw Hill-Interamericana. 6a edición. p 2Google Scholar
  85. Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210PubMedGoogle Scholar
  86. Sadd BM, Schmid-Hempel P (2009a) Ecological and evolutionary implications of specific immune responses. In: Rolff J, Reynolds SE (eds) Insect infection and immunity. Evolution, ecology and mechanism. Oxford University Press, Oxford, UKGoogle Scholar
  87. Sadd BM, Schmid-Hempel P (2009b) A distinct infection cost associated with trans-generational priming of antibacterial immunity in bumble-bees. Biol Lett 5:798–801PubMedPubMedCentralGoogle Scholar
  88. Schmid-Hempel P (2011) Evolutionary parasitology. Oxford University Press, Oxford, UKGoogle Scholar
  89. Serrato-Salas J, Hernández-Martínez S, Martinez-Barnetche J, Conde R, Alvarado-Delgado A, Zumaya-Estrada F, Lanz-Mendoza H (2018a) De novo DNA synthesis in Aedes aegypti midgut cells as complementary strategy to limitit Dengue viral replication. Front Microbiol 9:801Google Scholar
  90. Serrato-Salas S, Izquierdo-Sánchez J, Argüello M, Conde R, Alvarado-Delgado A, Lanz-Mendoza H (2018b) Aedes aegypti antiviral adaptive response against DENV-2. Dev Comp Immunol 84:28–36Google Scholar
  91. Shi ZH, Lin YT, Hou YM (2014) Mother-derived trans-generational immune priming in the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera, Dryophthoridae). Bull Entomol Res 104:742–750PubMedGoogle Scholar
  92. Shikano I, Hua KN, Cory JS (2016) Baculovirus-challenge and poor nutrition inflict within-generation fitness costs without triggering transgenerational immune priming. J Invertebr Pathol 136:35–42PubMedGoogle Scholar
  93. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557–561PubMedPubMedCentralGoogle Scholar
  94. Sun J, Deng W-M (2007) Hindsight mediates the role of notch in suppressing hedgehog signaling and cell proliferation. Dev Cell 12:431–442PubMedPubMedCentralGoogle Scholar
  95. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100PubMedGoogle Scholar
  96. Tassetto M, Kunitomi M, Andino R (2017) Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169:314–325PubMedPubMedCentralGoogle Scholar
  97. Tate AT, Graham AL (2015) Trans-generational priming of resistance in wild flour beetles reflects the primed phenotypes of laboratory populations and is inhibited by co-infection with a common parasite. Funct Ecol 29:1059–1069Google Scholar
  98. Tate AT, Rudolf VHW (2012) Immune priming across life stages and generations: implications for infectious disease dynamics in insects. Oikos 121:1083–1092Google Scholar
  99. Tate AT, Andolfatto P, Demuth JP, Graham AL (2017) The within-host dynamics of infection in trans-generationally primed flour beetles. Mol Ecol 26(14):3794–3807PubMedPubMedCentralGoogle Scholar
  100. Theopold U, Ekengren S, Hultmark D (1996) HLH106, a Drosophila transcription factor with similarity to the vertebrate sterol responsive element binding protein. PNAS 93:1195–1199PubMedGoogle Scholar
  101. Thomas AM, Rudolf VH (2010) Challenges of metamorphosis in invertebrate hosts: maintaining parasite resistance across life-history stages. Ecol Entomol 35:200–205Google Scholar
  102. Tidbury HJ, Pedersen AB, Boots M (2011) Within and transgenerational immune priming in an insect to a DNA virus. Proc R Soc Lond Ser B 278:871–876Google Scholar
  103. Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J (2014) First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface. J Appl Microbiol 117:347–357PubMedGoogle Scholar
  104. Vantaux A, Dabiré KR, Cohuet A, Lefèvre T (2014) A heavy legacy: offspring of malaria-infected mosquitoes show reduced disease resistance. Malar J 13:442PubMedPubMedCentralGoogle Scholar
  105. Vargas V, Moreno-García M, Duarte-Elguea E, Lanz-Mendoza H (2016) Limited specificity in the injury and infection priming against bacteria in Aedes aegypti mosquitoes. Front Microbiol 7:975Google Scholar
  106. Vorburger C, Gegenschatz SE, Ranieri G, Rodriguez P (2008) Limited scope for maternal effects in aphid defence against parasitoids. Ecol Entomol 33(2):189–196Google Scholar
  107. Wilson K, Graham RI (2015) Transgenerational effects modulate density-dependent prophylactic resistance to viral infection in a lepidopteran pest. Biol Lett 11:20150012PubMedPubMedCentralGoogle Scholar
  108. Witteveldt J, Cifuentes CC, Vlak JM, van Hulten MCW (2004) Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol 78:2057–2061PubMedPubMedCentralGoogle Scholar
  109. Wu G, Zhao Z, Liu C, Qiu L (2014) Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. J Econ Entomol 107:559–569PubMedGoogle Scholar
  110. Wu G, Xu L, Yi Y (2016) Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Immunol Lett 174:45–52PubMedGoogle Scholar
  111. Wu G, Li M, Liu Y, Ding Y and Yi Y (2015a) The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells. J Insect Physiol 81: 60–68PubMedGoogle Scholar
  112. Wu G, Yi Y, Sun J, Li M, Qiu L (2015b) No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA 2 B 2 from Photorhabdus luminescens TT01: an association with the inhibition of the host cellular immunity. Vaccine 33:6307–6313PubMedGoogle Scholar
  113. Wu G, Yi Y, Lv Y, Li M, Wang J, Qiu L (2015c) The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose-and time-dependent immune priming in Galleria mellonella larvae. J Invertebr Pathol 127:63–72PubMedGoogle Scholar
  114. Yue F, Zhou Z, Wang L, Ma Z, Wang J, Wang M, Zhang H, Song L (2013) Maternal transfer of immunity in scallop Chlamys farreri and its trans-generational immune protection to offspring against bacterial challenge. Dev Comp Immunol 41:569–577PubMedGoogle Scholar
  115. Zhang T, Qiu L, Sun Z, Wang L, Zhou Z, Liu R, Yue F, Sun R, Song L (2014) The specifically enhanced cellular immune responses in Pacific oyster (Crassostrea gigas) against secondary challenge with Vibrio splendidus. Dev Comp Immunol 45(1):141–150PubMedGoogle Scholar
  116. Zhao Z, Wu G, Wang J, Liu C, Qiu L (2013) Next-generation sequencing-based transcriptome analysis of Helicoverpa armigera larvae immune-primed with Photorhabdus luminescens TT01. PLoS One 8:e80146PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Humberto Lanz-Mendoza
    • 1
    Email author
  • Jorge Contreras Garduño
    • 2
  1. 1.Centro de Investigaciones sobre Enfermedades Infecciosas, INSPCuernavaca, MorelosMexico
  2. 2.Escuela Nacional de Estudios Superiores Morelia, UNAMMoreliaMexico

Personalised recommendations