Platyhelminthes: Molecular Dissection of the Planarian Innate Immune System

  • Eli Isael Maciel
  • Néstor J. OviedoEmail author


Multicellular organisms rely on their immune system to fight pathogens, maintain homeostasis, and repair tissues. Different environments and evolutionary paths have contributed to a myriad of strategies by which animals activate their immune system in response to body demands. Thus, invertebrate organisms lacking an adaptive immunity eliminate pathogenic microbes and heal tissues from injuries by activating the innate immune system. Planarians are invertebrates, members of the phylum Platyhelminthes (flatworms) and a classical model for studies of tissue regeneration. Recent work in planarians revealed an astonishing capacity to effectively recognize and eliminate a wide spectrum of pathogenic bacteria. Furthermore, planarians and humans display evolutionary conservation of signaling pathways and components associated with the microbiome that together contribute to the innate immune system. Organismal changes in the composition of commensal bacteria have important effects in tissue maintenance and repair of planarian tissues. Here, we focus on the planarian model system as a tractable paradigm to identify evolutionarily conserved mechanisms of innate immunity that can be further exploited in clinical settings to induce rapid clearance of pathogenic bacteria and modulation of regenerative events. We also propose the use of planarians as a reference organism for studies of comparative immunology.


Innate immunity Regeneration Planarians Platyhelmithes Invertebrates Microbiome Bacterial clearance Phagocytosis Neoblasts Stem cells 



We thank Devon Davidian for assistance with illustrations and members of the Oviedo Lab for comments on the manuscript.

Competing Interests

The authors declare no competing or financial interests.


We acknowledge support from the National Science Foundation graduate fellowship award 1744620 to EIM, and the University of California Cancer Research Coordinating Committee (Award# CRR-18-525108) and National Cancer Institute and National Institute of General Medical Sciences of the National Institute of Health awards CA176114 and GM109372 to NJO.


  1. Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre C, Conti F, Ben Amara A, Lepolard C, Djian B et al (2014) Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 16:338–350PubMedGoogle Scholar
  2. Abnave P, Muracciole X, Ghigo E (2017) Macrophages in invertebrates: from insects and crustaceans to marine bivalves. Results Probl Cell Differ 62:147–158PubMedGoogle Scholar
  3. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedGoogle Scholar
  4. Alegado RA, Campbell MC, Chen WC, Slutz SS, Tan M-W (2003) Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cell Microbiol 5:435–444PubMedGoogle Scholar
  5. Arnold CP, Merryman MS, Harris-Arnold A, McKinney SA, Seidel CW, Loethen S, Proctor KN, Guo L, Sánchez Alvarado A (2016) Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. elife 5Google Scholar
  6. Bah A, Vergne I (2017) Macrophage autophagy and bacterial infections. Front Immunol 8:1483PubMedPubMedCentralGoogle Scholar
  7. Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J (2016) The microbiome of animals: implications for conservation biology. Int J Genomics 2016:1–7Google Scholar
  8. Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids: II. Adoptive transfer of the xenograft reaction. Immunology 21:81–86PubMedPubMedCentralGoogle Scholar
  9. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS et al (2013a) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776PubMedPubMedCentralGoogle Scholar
  10. Barr JJ, Youle M, Rohwer F (2013b) Innate and acquired bacteriophage-mediated immunity. Bacteriophage 3:e25857PubMedPubMedCentralGoogle Scholar
  11. Bavington CD, Lever R, Mulloy B, Grundy MM, Page CP, Richardson NV, McKenzie JD (2004) Anti-adhesive glycoproteins in echinoderm mucus secretions. Comp Biochem Physiol B Biochem Mol Biol 139:607–617PubMedGoogle Scholar
  12. Bayne CJ (1990) Phagocytosis and non-self recognition in invertebrates. Bioscience 40:723–731Google Scholar
  13. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141PubMedPubMedCentralGoogle Scholar
  14. Berezow AB, Darveau RP (2011) Microbial shift and periodontitis: microbial shift. Periodontol 2000(55):36–47Google Scholar
  15. Bilej M, Vĕtvicka V, Tucková L, Trebichavský I, Koukal M, Síma P (1990) Phagocytosis of synthetic particles in earthworms. Effect of antigenic stimulation and opsonization. Folia Biol (Praha) 36:273–280Google Scholar
  16. Bocchinfuso DG, Taylor P, Ross E, Ignatchenko A, Ignatchenko V, Kislinger T, Pearson BJ, Moran MF (2012) Proteomic profiling of the planarian Schmidtea mediterranea and its mucus reveals similarities with human secretions and those predicted for parasitic flatworms. Mol Cell Proteomics 11:681–691Google Scholar
  17. Bosch TCG, Grasis JA, Lachnit T (2015) Microbial ecology in Hydra: why viruses matter. J Microbiol (Seoul Korea) 53:193–200Google Scholar
  18. Bowen ID (1980) Phagocytosis in polycelis tenuis. In: Nutrition in the Lower Metazoa. Elsevier, The University of Caen, France pp 1–14Google Scholar
  19. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459PubMedPubMedCentralGoogle Scholar
  20. Casanova JE (2017) Bacterial autophagy: offense and defense at the host–pathogen interface. Cell Mol Gastroenterol Hepatol 4:237–243PubMedPubMedCentralGoogle Scholar
  21. Chen H-D, Kao C-Y, Liu B-Y, Huang S-W, Kuo C-J, Ruan J-W, Lin Y-H, Huang C-R, Chen Y-H, Wang H-D et al (2017) HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans. Autophagy 13:371–385PubMedGoogle Scholar
  22. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G et al (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298:159–165PubMedGoogle Scholar
  23. Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 14:668–675PubMedPubMedCentralGoogle Scholar
  24. Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85PubMedGoogle Scholar
  25. Cooper EL (1969) Specific tissue graft rejection in earthworms. Science 166:1414–1415PubMedGoogle Scholar
  26. Cooper EL, Roch P (1984) Earthworm leukocyte interactions during early stages of graft rejection. J Exp Zool 232:67–72Google Scholar
  27. Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris. Kinetics and characteristics. Transplantation 41:514–520PubMedGoogle Scholar
  28. Cooper EL, Roch P (1992) The capacities of earthworms to heal wounds and to destroy allografts are modified by polychlorinated biphenyls (PCB). J Invertebr Pathol 60:59–63PubMedGoogle Scholar
  29. Cooper EL, Kauschke E, Cossarizza A (2001) Annelid humoral immunity: cell lysis in earthworms. Adv Exp Med Biol 484:169–183PubMedGoogle Scholar
  30. Cooper EL, Ru B, Weng N (2004) Earthworms: sources of antimicrobial and anticancer molecules. Adv Exp Med Biol 546:359–389PubMedGoogle Scholar
  31. Dales RP (1978) The basis of graft rejection in the earthworms Lumbricus terrestris and Eisenia foetida. J Invertebr Pathol 32:264–277Google Scholar
  32. Degnan SM (2015) The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: a capacity for specificity? Dev Comp Immunol 48:269–274PubMedGoogle Scholar
  33. Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol Ecol 48:187–197PubMedGoogle Scholar
  34. Egger B, Steinke D, Tarui H, De Mulder K, Arendt D, Borgonie G, Funayama N, Gschwentner R, Hartenstein V, Hobmayer B et al (2009) To be or not to be a flatworm: the acoel controversy. PLoS One 4:e5502PubMedPubMedCentralGoogle Scholar
  35. Engelmann P, Pál J, Berki T, Cooper EL, Németh P (2002) Earthworm leukocytes react with different mammalian antigen-specific monoclonal antibodies. Zoology (Jena) 105:257–265Google Scholar
  36. Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363:2233–2247PubMedPubMedCentralGoogle Scholar
  37. Feng W, Zhang S (2012) A trypsin homolog in amphioxus: expression, enzymatic activity and evolution. Mol Biol Rep 39:1745–1753PubMedGoogle Scholar
  38. Forsthoefel DJ, Park AE, Newmark PA (2011) Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Dev Biol 356:445–459PubMedPubMedCentralGoogle Scholar
  39. Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA, Newmark PA (2012) An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 23:691–704PubMedPubMedCentralGoogle Scholar
  40. Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Loso T, Bosch TCG (2012) MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A 109:19374–19379PubMedPubMedCentralGoogle Scholar
  41. Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci U S A 104:13146–13151PubMedPubMedCentralGoogle Scholar
  42. Gao L, Han Y, Deng H, Hu W, Zhen H, Li N, Qin N, Yan M, Wu W, Liu B et al (2017) The role of a novel C-type lectin-like protein from planarian in innate immunity and regeneration. Dev Comp Immunol 67:413–426PubMedGoogle Scholar
  43. Garcia-Corrales P, Gamo J (1988) Ultrastructural changes in the gastrodermal phagocytic cells of the planarian Dugesia gonocephala s.l. during food digestion (Plathelminthes). Zoomorphology 108:109–117Google Scholar
  44. Gehrke AR, Srivastava M (2016) Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev 40:131–137PubMedGoogle Scholar
  45. Gentile L, Cebrià F, Bartscherer K (2011) The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis Model Mech 4:12–19PubMedGoogle Scholar
  46. González-Estévez C, Felix DA, Aboobaker AA, Saló E (2007) Gtdap-1 and the role of autophagy during planarian regeneration and starvation. Autophagy 3:640–642PubMedGoogle Scholar
  47. Gordon S (2016a) Phagocytosis: an immunobiologic process. Immunity 44:463–475PubMedGoogle Scholar
  48. Gordon S (2016b) Phagocytosis: the legacy of Metchnikoff. Cell 166:1065–1068PubMedPubMedCentralGoogle Scholar
  49. Goupil LS, Ivry SL, Hsieh I, Suzuki BM, Craik CS, O’Donoghue AJ, McKerrow JH (2016) Cysteine and aspartyl proteases contribute to protein digestion in the gut of freshwater planaria. PLoS Negl Trop Dis 10:e0004893PubMedPubMedCentralGoogle Scholar
  50. Grasis JA (2017) The intra-dependence of viruses and the Holobiont. Front Immunol 8:1501PubMedPubMedCentralGoogle Scholar
  51. Guedelhoefer OC, Alvarado AS (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139:3510–3520PubMedPubMedCentralGoogle Scholar
  52. Han Y, Li A, Gao L, Wu W, Deng H, Hu W, Li N, Sun S, Zhang X, Zhao B et al (2017) Identification and characterization of a phospholipid scramblase encoded by planarian Dugesia japonica. Gene 602:43–49PubMedGoogle Scholar
  53. Harris J (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231PubMedGoogle Scholar
  54. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270Google Scholar
  55. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25PubMedPubMedCentralGoogle Scholar
  56. Hildemann WH, Bigger CH, Johnston IS (1979) Histoincompatibility reactions and allogeneic polymorphism among invertebrates. Transplant Proc 11:1136–1142PubMedGoogle Scholar
  57. Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19PubMedGoogle Scholar
  58. Humphries JE, Yoshino TP (2003) Cellular receptors and signal transduction in molluscan hemocytes: connections with the innate immune system of vertebrates. Integr Comp Biol 43:305–312PubMedGoogle Scholar
  59. Imler JL, Hoffmann JA (2000) Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol 3:16–22PubMedGoogle Scholar
  60. Ishii S, Sakurai T (1991) Food ingestion by planarian intestinal phagocytic cells? a study by scanning electron microscopy. Hydrobiologia 227:179–185Google Scholar
  61. Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395PubMedGoogle Scholar
  62. Kang D, Liu G, Lundström A, Gelius E, Steiner H (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci U S A 95:10078–10082PubMedPubMedCentralGoogle Scholar
  63. Kawabata S, Muta T (2010) Sadaaki Iwanaga: discovery of the lipopolysaccharide- and beta-1,3-D-glucan-mediated proteolytic cascade and unique proteins in invertebrate immunity. J Biochem (Tokyo) 147:611–618Google Scholar
  64. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337PubMedPubMedCentralGoogle Scholar
  65. Kuo C-J, Hansen M, Troemel E (2017) Autophagy and innate immunity: insights from invertebrate model organisms. Autophagy:1–10Google Scholar
  66. Lai AG, Aboobaker AA (2017) Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC genomics 18:389Google Scholar
  67. Langlet C, Bierne J (1984) Immunocompetent cells requisite for graft rejection in Lineus (invertebrata, nemertea). Dev Comp Immunol 8:547–557PubMedGoogle Scholar
  68. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335PubMedPubMedCentralGoogle Scholar
  69. Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 12:413–428PubMedGoogle Scholar
  70. Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Söderhäll I, Söderhäll K (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila Infection in a crustacean, Pacifastacus leniusculus. J Biol Chem 282:33593–33598PubMedGoogle Scholar
  71. Loker ES, Adema CM, Zhang S-M, Kepler TB (2004) Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunol Rev 198:10–24PubMedPubMedCentralGoogle Scholar
  72. Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan Y-X, Ling E (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol 5:252PubMedPubMedCentralGoogle Scholar
  73. Lu Q, Wu S, Zhen H, Deng H, Song Q, Ma K, Cao Z, Pang Q, Zhao B (2017) 14-3-3 α and 14-3-3 ζ contribute to immune responses in planarian Dugesia japonica. Gene 615:25–34PubMedGoogle Scholar
  74. Lukoyanova N, Kondos SC, Farabella I, Law RHP, Reboul CF, Caradoc-Davies TT, Spicer BA, Kleifeld O, Traore DAK, Ekkel SM et al (2015) Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol 13:e1002049PubMedPubMedCentralGoogle Scholar
  75. Mah SA, Moy GW, Swanson WJ, Vacquier VD (2004) A perforin-like protein from a marine mollusk. Biochem Biophys Res Commun 316:468–475PubMedGoogle Scholar
  76. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124PubMedPubMedCentralGoogle Scholar
  77. McCormack R, Podack ER (2015) Perforin-2/Mpeg1 and other pore-forming proteins throughout evolution. J Leukoc Biol 98:761–768PubMedPubMedCentralGoogle Scholar
  78. McFall-Ngai M (2007) Care for the community: adaptive immunity. Nature 445:153–153PubMedGoogle Scholar
  79. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236PubMedPubMedCentralGoogle Scholar
  80. Meyer JR (2013) Sticky bacteriophage protect animal cells. Proc Natl Acad Sci U S A 110:10475–10476PubMedPubMedCentralGoogle Scholar
  81. Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG (2007) The innate immune repertoire in cnidaria–ancestral complexity and stochastic gene loss. Genome Biol 8:R59PubMedPubMedCentralGoogle Scholar
  82. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273PubMedPubMedCentralGoogle Scholar
  83. Morita M (1991) Phagocytic response of planarian reticular cells to heat-killed bacteria. Hydrobiologia 227:193–199Google Scholar
  84. Morita M (1995) Structure and function of the reticular cell in the planarian Dugesia dorotocephala. Hydrobiologia 305:189–196Google Scholar
  85. Morokuma J, Durant F, Williams KB, Finkelstein JM, Blackiston DJ, Clements T, Reed DW, Roberts M, Jain M, Kimel K et al (2017) Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel: Morokuma et al. Regeneration 4:85–102PubMedPubMedCentralGoogle Scholar
  86. Mukherjee S, Ray M, Ray S (2015) Phagocytic efficiency and cytotoxic responses of Indian freshwater sponge (Eunapius carteri) cells isolated by density gradient centrifugation and flow cytometry: a morphofunctional analysis. Zoology (Jena) 118:8–18Google Scholar
  87. Mukherjee S, Ray M, Ray S (2016) Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate). Comp Biochem Physiol C Toxicol Pharmacol CBP 187:19–31Google Scholar
  88. Muta T, Iwanaga S (1996) The role of hemolymph coagulation in innate immunity. Curr Opin Immunol 8:41–47PubMedGoogle Scholar
  89. Nakagawa I (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040PubMedGoogle Scholar
  90. Nakao T (1974) An electron microscopic study of the circulatory system in Nereis japonica. J Morphol 144:217–235Google Scholar
  91. Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443–459PubMedGoogle Scholar
  92. Newmark PA, Alvarado AS (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219PubMedGoogle Scholar
  93. Ng A, Xavier RJ (2011) Leucine-rich repeat (LRR) proteins: Integrators of pattern recognition and signaling in immunity. Autophagy 7:1082–1084PubMedPubMedCentralGoogle Scholar
  94. Nyholm SV, Graf J (2012) Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 10:815–827PubMedGoogle Scholar
  95. Pang Q, Liu X, Zhao B, Jiang Y, Su F, Zhang X, Nie M, Zhang M, Sun H (2010) Detection and characterization of phenoloxidase in the freshwater planarian Dugesia japonica. Comp Biochem Physiol B Biochem Mol Biol 157:54–58PubMedGoogle Scholar
  96. Pang Q, Liu X, Zhao B, Wei W, Zhang X, Zhao L, Xie J, Sun H (2012) Purification, characterization and induction of a C-type lectin in the freshwater planarian Dugesia japonica. Open Life Sci 7Google Scholar
  97. Pang Q, Gao L, Hu W, An Y, Deng H, Zhang Y, Sun X, Zhu G, Liu B, Zhao B (2016) De Novo transcriptome analysis provides insights into immune related genes and the RIG-I-Like receptor signaling pathway in the freshwater planarian (Dugesia japonica). PLoS One 11:e0151597PubMedPubMedCentralGoogle Scholar
  98. Pang Q, Gao L, Bai Y, Deng H, Han Y, Hu W, Zhang Y, Yuan S, Sun W, Lu Y et al (2017) Identification and characterization of a novel multifunctional placenta specific protein 8 in Dugesia japonica. Gene 613:1–9PubMedGoogle Scholar
  99. Pedersen KJ (1963) Slime-secreting cells of planarians. Ann N Y Acad Sci 106:424–443PubMedGoogle Scholar
  100. Peiris TH, Hoyer KK, Oviedo NJ (2014) Innate immune system and tissue regeneration in planarians: an area ripe for exploration. Semin Immunol 26:295–302PubMedPubMedCentralGoogle Scholar
  101. Pellettieri J, Sánchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105PubMedGoogle Scholar
  102. Petersen CP (2014) Planarian resistance to blades and bugs. Cell Host Microbe 16:271–272PubMedGoogle Scholar
  103. Pitt SJ, Graham MA, Dedi CG, Taylor-Harris PM, Gunn A (2015) Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br J Biomed Sci 72:174–181; quiz 208PubMedGoogle Scholar
  104. Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan MW, Ray KP, Solari R, Johnson CD, Ewbank JJ (2001) A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol CB 11:809–821PubMedGoogle Scholar
  105. Ramírez-Gómez F, Ortíz-Pineda PA, Rojas-Cartagena C, Suárez-Castillo EC, García-Arrarás JE, García-Ararrás JE (2008) Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 60:57–71PubMedGoogle Scholar
  106. Ramírez-Gómez F, Ortiz-Pineda PA, Rivera-Cardona G, García-Arrarás JE (2009) LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima. PLoS One 4:e6178PubMedPubMedCentralGoogle Scholar
  107. Reddien PW, Sánchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757PubMedGoogle Scholar
  108. Ren C, Finkel SE, Tower J (2009) Conditional inhibition of autophagy genes in adult Drosophila impairs immunity without compromising longevity. Exp Gerontol 44:228–235PubMedGoogle Scholar
  109. Ribet D, Cossart P (2015) How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 17:173–183PubMedGoogle Scholar
  110. Roberts-Galbraith RH, Newmark PA (2015) On the organ trail: insights into organ regeneration in the planarian. Curr Opin Genet Dev 32:37–46PubMedGoogle Scholar
  111. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedPubMedCentralGoogle Scholar
  112. Salzet M (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22:285–288PubMedGoogle Scholar
  113. Salzet M, Tasiemski A, Cooper E (2006) Innate immunity in lophotrochozoans: the annelids. Curr Pharm Des 12:3043–3050PubMedGoogle Scholar
  114. Sánchez Alvarado A (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr Opin Genet Dev 13:438–444PubMedGoogle Scholar
  115. Santos FV (1929) Studies on transplantation in planaria. Biol Bull 57:188–197Google Scholar
  116. Santos FV (1931) Studies on transplantation in planaria. Physiol Zool 4:111–164Google Scholar
  117. Schrank GD, Verwey WF (1976) Distribution of cholera organisms in experimental Vibrio cholerae infections: proposed mechanisms of pathogenesis and antibacterial immunity. Infect Immun 13:195–203PubMedPubMedCentralGoogle Scholar
  118. Schulenburg H, Boehnisch C, Michiels NK (2007) How do invertebrates generate a highly specific innate immune response? Mol Immunol 44:3338–3344PubMedGoogle Scholar
  119. Shagin DA, Barsova EV, Bogdanova E, Britanova OV, Gurskaya N, Lukyanov KA, Matz MV, Punkova NI, Usman NY, Kopantzev EP et al (2002) Identification and characterization of a new family of C-type lectin-like genes from planaria Girardia tigrina. Glycobiology 12:463–472PubMedGoogle Scholar
  120. Silver AC, Kikuchi Y, Fadl AA, Sha J, Chopra AK, Graf J (2007) Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc Natl Acad Sci U S A 104:9481–9486PubMedPubMedCentralGoogle Scholar
  121. Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER (2003) Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity 18:381–390PubMedGoogle Scholar
  122. Taleh M, Saadati M, Farshbaf R, Khakvar R (2014) Partial characterization of phenoloxidase enzyme in the hemocytes of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J King Saud Univ Sci 26:285–289Google Scholar
  123. Tenor JL, Aballay A (2008) A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9:103–109PubMedGoogle Scholar
  124. Tiller GR, Garsin DA (2014) Of worms and men: HLH-30 and TFEB regulate tolerance to infection. Immunity 40:857–858PubMedPubMedCentralGoogle Scholar
  125. Torre C, Abnave P, Tsoumtsa LL, Mottola G, Lepolard C, Trouplin V, Gimenez G, Desrousseaux J, Gempp S, Levasseur A et al (2017) Staphylococcus aureus Promotes Smed-PGRP-2/Smed-setd8-1 methyltransferase signalling in planarian Neoblasts to sensitize anti-bacterial gene responses during re-infection. EBioMedicine 20:150–160PubMedPubMedCentralGoogle Scholar
  126. Tsoumtsa LL, Torre C, Trouplin V, Coiffard B, Gimenez G, Mege J-L, Ghigo E (2017) Antimicrobial capacity of the freshwater planarians against S. aureus is under the control of Timeless. Virulence 8:1160–1169PubMedPubMedCentralGoogle Scholar
  127. Wang X-W, Wang J-X (2013) Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol 34:981–989PubMedGoogle Scholar
  128. Wenger Y, Buzgariu W, Reiter S, Galliot B (2014) Injury-induced immune responses in Hydra. Semin Immunol 26:277–294Google Scholar
  129. Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 280:27949–27959PubMedGoogle Scholar
  130. Wiens M, Korzhev M, Perovic-Ottstadt S, Luthringer B, Brandt D, Klein S, Müller WEG (2007) Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera). Mol Biol Evol 24:792–804PubMedGoogle Scholar
  131. Wilkinson CR, Garrone R, Vacelet J (1984) Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc B Biol Sci 220:519–528Google Scholar
  132. Wilson EO (1987) The little things that run the world* (The importance and conservation of invertebrates). Conserv Biol 1:344–346Google Scholar
  133. Yang J, Wang L, Zhang H, Qiu L, Wang H, Song L (2011) C-type lectin in Chlamys farreri (CfLec-1) mediating immune recognition and opsonization. PLoS One 6:e17089PubMedPubMedCentralGoogle Scholar
  134. Zanin M, Baviskar P, Webster R, Webby R (2016) The interaction between respiratory pathogens and mucus. Cell Host Microbe 19:159–168PubMedPubMedCentralGoogle Scholar
  135. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedPubMedCentralGoogle Scholar
  136. Zhou L, Wu S, Liu D, Xu B, Zhang X, Zhao B (2012) Characterization and expression analysis of a trypsin-like serine protease from planarian Dugesia japonica. Mol Biol Rep 39:7041–7047PubMedGoogle Scholar
  137. Zhu SJ, Pearson BJ (2016) (Neo)blast from the past: new insights into planarian stem cell lineages. Curr Opin Genet Dev 40:74–80PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular & Cell BiologyUniversity of California, MercedMercedUSA
  2. 2.Quantitative and Systems Biology Graduate Program, University of California, MercedMercedUSA
  3. 3.Health Sciences Research Institute, University of California, MercedMercedUSA

Personalised recommendations