Advertisement

Cnidaria: Anthozoans in the Hot Seat

  • Caroline V. Palmer
  • Nikki G. Traylor-Knowles
Chapter

Abstract

Cnidarians comprise a diverse and phylogenetically basal phylum, some of which—such as scleractinian corals (Anthozoa)—are responsible for the formation and maintenance of ecosystems. Anthozoan immunology is a relatively new field, yet has great potential to inform invertebrate immunology, medicine, as well as coral reef conservation and restoration. Here we review cnidarian innate immune mechanisms in the context of invertebrate effector responses. We focus on anthozoans and discuss the blurred boundary between immune and stress responses. We conclude by high 1ighting unique aspects of coral biology and exploring the role of immunology in coral reef conservation and restoration through climate change.

References

  1. Aceret TL, Coll JC, Uchio Y, Sammarco PW (1998) Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 120:121–126PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ainsworth T, Knack B, Ukani L, Seneca F, Weiss Y, Leggat W (2015) In situ hybridisation detects pro-apoptotic gene expression of a Bcl-2 family member in white syndrome-affected coral. Dis Aquat Org 117:155–163PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3:e2680PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12:13–19PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC (2016) RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 4:e1616PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anithajothi R, Duraikannu K, Umagowsalya G, Ramakritinan C (2014) The presence of biomarker enzymes of selected scleractinian corals of Palk Bay, southeast coast of India. Biomed Res Int 2014:1–6CrossRefGoogle Scholar
  8. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts higHL: Intelectin-1ight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734PubMedPubMedCentralCrossRefGoogle Scholar
  9. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411PubMedCrossRefPubMedCentralGoogle Scholar
  10. Augustin R, Bosch TC (2010) Cnidarian immunity: a tale of two barriers. Adv Exp Med Biol 708:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkelands C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720PubMedCrossRefPubMedCentralGoogle Scholar
  12. Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A 110:1387–1392PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77:1303–1315PubMedCrossRefPubMedCentralGoogle Scholar
  14. Baruah K, Norouzitallab P, Linayati L, Sorgeloos P, Bossier P (2014) Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Dev Comp Immunol 46:470–479PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baumgarten S, Simakov O, Esherick LY, Leiw YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, HGough J, Weis VM, Aranda M, Pringe JR, Voolstra CR (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A 22:11893–11898CrossRefGoogle Scholar
  16. Berton G, Castaldi M, Cassatella M, Nauseef W (2015) Celebrating the 50th anniversary of the seminal discovery that the phagocyte respiratory burst enzyme is an NADPH oxidase. J Leukoc Biol 97:1–2PubMedCrossRefPubMedCentralGoogle Scholar
  17. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40:845–859PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bidla G, Hauling T, Dushay MS, Theopold U (2008) Activation of insect phenoloxidase after injury: endogenous versus foreign elicitors. J Innate Immun 1:301–308PubMedCrossRefPubMedCentralGoogle Scholar
  19. Biressi A, Zou T, Dupont S, DaHL: Intelectin-1berg C, Di Benedetto C, Bonasoro F, Thorndyke M, Carnevali MDC (2010) Wound healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis. Zoomorphology 129:1–19Google Scholar
  20. Black RE, Bloom L (1984) Heat shock proteins in aurelia (Cnidaria, Scyphozoa). J Exp Zool 230:303–307PubMedCrossRefPubMedCentralGoogle Scholar
  21. Black NA, Voellmy R, Szmant AM (1995) Heat shock protein induction in Montastraea faveolata and Aiptasia pallida exposed to elevated temperatures. Biol Bull 188:234–240PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bogdanov AM, Mishin AS, Yampolsky IV, Belousov VV, Chudakov DM, Subach FV, Verkhusha VV, Lukyanov S, Lukyanov KA (2009) Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5:459–461PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bosch T, Praetzel G (1991) The heat shock response in hydra: immunological relationship of hsp60, the major heat shock protein of Hydra vulgaris, to the ubiquitous hsp70 family. Hydrobiologia 216/217:513–517CrossRefGoogle Scholar
  24. Bosch T, Krylow SM, Bode HR, Steele RE (1988) Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. PNAS 85:7927–7931PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bosch TCG, Anton-Erxleben F, Hemmrich G, Khalturin K (2010) The hydra polyp: nothing but an active stem cell community. Develop Growth Differ 52:15–25CrossRefGoogle Scholar
  26. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brandt ME, McManus JW (2009) Disease incidence is related to bleaching extent in reef-building corals. Ecology 90:2859–2867PubMedCrossRefPubMedCentralGoogle Scholar
  28. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brower D, Brower S, Hayward D, Ball E (1997) Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. Proc Natl Acad Sci U S A 94:9182–9187PubMedPubMedCentralCrossRefGoogle Scholar
  31. Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309CrossRefGoogle Scholar
  32. Brown T, Rodriguez-Lanetty M (2015) Defending against pathogens–immunological priming and its molecular basis in a sea anemone, cnidarian. Sci Rep 5:17425PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brown T, Bourne D, Rodriguez-Lanetty M (2013) Transcriptional activation of c3 and hsp70 as part of the immune response of Acropora millepora to bacterial challenges. PLoS One 8:e67246PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711PubMedPubMedCentralCrossRefGoogle Scholar
  35. Burge CA, Mouchka ME, Harvell CD, Roberts S (2013) Immune response of the Caribbean sea fan, Gorgonia ventalina, exposed to an Aplanochytrium parasite as revealed by transcriptome sequencing. Front Physiol 4:180PubMedPubMedCentralCrossRefGoogle Scholar
  36. Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88–93CrossRefGoogle Scholar
  37. Carpenter LW, Patterson MR, Bromage ES (2010) Water flow influences the spatiotemporal distribution of heat shock protein 70 within colonies of the scleractinian coral Montastrea annularis (Ellis and Solander,1786) following heat stress: implications for coral bleaching. J Exp Mar Biol Ecol 387:52–59CrossRefGoogle Scholar
  38. Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568PubMedCrossRefPubMedCentralGoogle Scholar
  39. Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126PubMedCrossRefGoogle Scholar
  40. Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cerenius L, Kawabata SI, Lee BL, Nonaka M, Soderhall K (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35:575–583PubMedCrossRefPubMedCentralGoogle Scholar
  42. Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 347–371CrossRefGoogle Scholar
  43. Changyun W, Haiyan L, Changlun S, Yanan W, Liang L, Huashi G (2008) Chemical defensive substances of soft corals and gorgonians. Acta Ecol Sin 28:2320–2328CrossRefGoogle Scholar
  44. Choresh O, Ron EZ, Loya Y (2001) The 60-kDa heat shock protein (HSP60) of the sea anemone Anemonia viridis: a potential early warning system for environmental changes. Mar Biotechnol 3:501–508PubMedCrossRefPubMedCentralGoogle Scholar
  45. Chow AM, Ferrier-Pages C, Khalouei S, Reynaud S, Brown IR (2009) Increased light intensity induces heat shock protein Hsp60 in coral species. Cell Stress Chaperones 14:469–476PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cooper EL (2010) Evolution of immune systems from self/not self to danger to Artificial Immune Systems (AIS). Phys Life Rev 7:55–78PubMedCrossRefPubMedCentralGoogle Scholar
  47. Cooper EL, Hirabayashi K, Strychar KB, Sammarco PW (2014) Corals and their potential applications to integrative medicine. Evid Based Complement Alternat Med 2014:9CrossRefGoogle Scholar
  48. Cornet S, Biard C, Moret Y (2007) Is there a role for antioxidant carotenoids in limiting self-harming immune response in invertebrates? Biol Lett 3:284–288PubMedPubMedCentralCrossRefGoogle Scholar
  49. Couch CS, Mydlarz LD, Harvell CD, Douglas NL (2008) Variation in measures of immunocompetence of sea fan coral, Gorgonia ventalina, in the Florida Keys. Mar Biol 155:281CrossRefGoogle Scholar
  50. Couch CS, Weil E, Harvell CD (2013) Temporal dynamics and plasticity in the cellular immune response of the sea fan coral, Gorgonia ventalina. Mar Biol 160:2449–2460CrossRefGoogle Scholar
  51. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 182:127–182Google Scholar
  52. D'Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by Green Fluorescent Protein (GFP)-like pigments. Coral Reefs. https://doi.org/10.1007/s00338-012-0926-8
  53. Daniels C, Baumgarten S, Yum L, MIchell C, Bayer T, Arif C, Roder C, Weil E, Voolstra C (2015) Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease. Frontiers in Marine. Science 2:62Google Scholar
  54. Desalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971PubMedCrossRefPubMedCentralGoogle Scholar
  55. Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachere E (2016) Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc B 371:20150300CrossRefGoogle Scholar
  56. Detournay O, Schnitzler CE, Poole AZ, Weis V (2012) Regulation of cnidarian–dinoflagellate mutualisms: evidence that activation of a host TGFβ innate immune pathway promotes tolerance of the symbiont. Dev Comp Immunol 38:525–537PubMedCrossRefPubMedCentralGoogle Scholar
  57. Diaz JM, Hansel CM, Apprill A, Brighi C, Zhang T, Weber L, McNally S, Xun L (2016) Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nat Commun 7:13801PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dishaw LJ, Smith SL, Bigger CH (2005) Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 57:535–548PubMedCrossRefGoogle Scholar
  59. Domart-Coulon IJ, Traylor-Knowles N, Peters E, Elbert D, Downs CA, Price K, Stubbs J, McLaugHL: Intelectin-1in S, Cox E, Aeby G, Brown PR, Ostrander GK (2006) Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa. Coral Reefs 25:531–543Google Scholar
  60. Downs CA, Mueller EM, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544PubMedCrossRefPubMedCentralGoogle Scholar
  61. Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543PubMedCrossRefPubMedCentralGoogle Scholar
  62. Downs CA, Fauth JE, Robinson CE, Curry R, Lanzendorf B, Halas JC, Halas J, Woodley CM (2005) Cellular diagnostics and coral health: declining coral health in the Florida Keys. Mar Pollut Bull 51:558–569PubMedCrossRefPubMedCentralGoogle Scholar
  63. Drake JL, Massa T, Haramatya L, Zelzionb E, Bhattacharya D (2013) Falkowaski PG proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. PNAS 110:3788–3793PubMedCrossRefPubMedCentralGoogle Scholar
  64. DuBuc TQ, Traylor-Knowles N, Martindale MQ (2014) Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol 12:24PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B Biol Sci 274:3079–3085CrossRefGoogle Scholar
  66. Edwards AJ, Guest JR, Heyward AJ, Villanueva RD, Baria MV, Bollozos IS, Golbuu Y (2015) Direct seeding of mass-cultured coral larvae is not an effective option for reef rehabilitation. Mar Ecol Prog Ser 525:105–116CrossRefGoogle Scholar
  67. Esposito R, D'Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A (2012) New insights into the evolution of Metazoan tyrosinase gene family. PLoS One 7:e35731PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fang L-S, Huang S-P, Lin K-L (1997) High temperature induces the synthesis of heat-shock proteins and the elevation of intracellular calcium in the coral Acropora grandis. Coral Reefs 16:127–131CrossRefGoogle Scholar
  69. Fang F, Yan T, Liu Q (2005) Application of chemical ecology in controlling marine fouling organisms. Ying Yong Sheng Tai Xue Bao 16:1997–2002PubMedPubMedCentralGoogle Scholar
  70. Fensome RA (1993) A classification of living and fossil dinoflagellates. Micropaleontol Spec Publica 7:351Google Scholar
  71. Forsman ZH, Page CA, Toonen RJ, Vaughan D (2015) Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3:e1313PubMedPubMedCentralCrossRefGoogle Scholar
  72. Franzenburg S, Fraunea S, Kunzel S, Baines JF, SDomazet-Loso T, Bosch T (2012) MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A 109:19374–11979PubMedPubMedCentralCrossRefGoogle Scholar
  73. Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TC, Fraune S (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 110:E3730–E3738PubMedPubMedCentralCrossRefGoogle Scholar
  74. Fuess LE, Weil E, Grinshpon RD, Mydlarz LD (2017) Life or death: disease-tolerant coral species activate autophagy following immune challenge. Proc R Soc B 284:20170771PubMedCrossRefPubMedCentralGoogle Scholar
  75. Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway - its role in innate immunity and evolution. Immunol Rev 198:185–202PubMedCrossRefPubMedCentralGoogle Scholar
  76. Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2:1114–1126CrossRefGoogle Scholar
  77. Gardner SG, Raina J-B, Ralph PJ, Petrou K (2017) Reactive Oxygen Species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress. J Exp Biol 220:1787PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gimenez A, Haran N, Pereira N, Acuña F (2014) First report of phenoloxidase and peroxidase activities in two intertidal sea anemone species of Argentina. Invertebr Surviv J 11:192–196Google Scholar
  79. Gittins JR, D'Angelo C, Oswald F, Edwards RJ, Wiedenmann J (2015) Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol Ecol 24:453–465PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gochfeld DJ, Aeby GS (2008) Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar Ecol Prog Ser 362:119–128CrossRefGoogle Scholar
  81. Goldstone JV (2008) Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone Nematostella vectensis. Cell Biol Toxicol 24:483–502PubMedPubMedCentralCrossRefGoogle Scholar
  82. Graham NA, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14CrossRefGoogle Scholar
  83. Haguenauer A, Zuberer F, Ledoux J-B, Aurelle D (2013) Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. J Exp Mar Biol Ecol 449:349–357CrossRefGoogle Scholar
  84. Haine ER, Pollitt LC, Moret Y, Siva-Jothy MT, Rolff J (2008) Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J Insect Physiol 54:1090–1097PubMedCrossRefPubMedCentralGoogle Scholar
  85. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. OUP, Oxford, USACrossRefGoogle Scholar
  86. Hamada M, Shoguchi E, Shinzato C, Kawashima T, Miller DJ, Satoh N (2013) The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Mol Biol Evol 30:167–176PubMedCrossRefPubMedCentralGoogle Scholar
  87. Harvell CD, Fenical W, Roussis V, Ruesink JL, Griggs CC, Greene CH (1993) Local and geographic variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar Ecol Prog Ser 93:165–173CrossRefGoogle Scholar
  88. Hashimoto K, Shibuno T, Murayama-Kayano E, Tanaka H, Kayano T (2004) Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23:485–491Google Scholar
  89. Hawkins TD, Bradley BJ, Davy SK (2013) Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis. FASEB J 27:4790–4798PubMedCrossRefPubMedCentralGoogle Scholar
  90. Hawkridge JM, Pipe RK, Brown BE (2000) Localization of antioxidant enzymes in the cnidarians Anemonia viridis and Goniopora stokesi. Mar Biol 137:1–9CrossRefGoogle Scholar
  91. Hayes ML, Eytan RI, Hellberg ME (2010) High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). BMC Evol Biol 10:150PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hemmrich G, Miller DJ, Bosch TCG (2007) The evolution of immunity: a low-life perspective. Trends Immunol 28:449–454PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1818–1318CrossRefGoogle Scholar
  94. Hollingsworth LL, Kinzie RA, Lewis TD, Krupp DA, Leong JAC (2005) Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24:523–523CrossRefGoogle Scholar
  95. Huang C, Morlighem J-ERL, Cai J, Liao Q, Perez CD, Braga Gomes P, Guo M, Radis-Baptista G, Ming-Yuen Lee S (2017) Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching. Sci Rep 7:5333PubMedPubMedCentralCrossRefGoogle Scholar
  96. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377PubMedCrossRefPubMedCentralGoogle Scholar
  97. Hutton DMC, Smith VJ (1996) Antibacterial properties of isolated amoebocytes from the sea anemone Actinia equina. Biol Bull 191:441–451PubMedCrossRefPubMedCentralGoogle Scholar
  98. Iguchi A, Shinzato C, Foret S, Miller D (2011) Identification of fast-evolving genes in the scleractinian coral acropora using comparative EST analysis. PLoS One 6:e20140PubMedPubMedCentralCrossRefGoogle Scholar
  99. Jacobson M, Weil M, Raff M (1997) Programmed cell death in animal development. Cell 88:347–354PubMedCrossRefPubMedCentralGoogle Scholar
  100. Jatkar AA, Brown BE, Bythell JC, Guppy R, Morris NJ, Pearson JP (2010) Coral mucus: the properties of its constituent mucins. Biomacromolecules 11:883–888PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jeong HJ, Yoo YD, Kang NS, Lim AS, Seong KA, Lee SY, Lee MJ, Lee KH, Kim HS, Shin W, Nam SW, Yih W, Lee K (2012) Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc Natl Acad Sci U S A 109:12604–12609PubMedPubMedCentralCrossRefGoogle Scholar
  102. Jin YK, Lundgren P, Lutz A, Raina J-B, Howells EJ, Paley AS, Willis BL, van Oppen MJH (2016) Genetic markers for antioxidant capacity in a reef-building coral. Sci Adv 2:e1500842PubMedPubMedCentralCrossRefGoogle Scholar
  103. Johnson MS, Lu N, Denessiouk K, Heino J, Gullberg D (2009) Integrins during evolution: evolutionary trees and model organisms. BBA-Biomembranes 1788:779–789PubMedCrossRefPubMedCentralGoogle Scholar
  104. Kaiko GE, Stappenbeck TS (2014) Host–microbe interactions shaping the gastrointestinal environment. Trends Immunol 35:538–548PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13:5–5PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kelman D, Kashman Y, Hill RT, Rosenberg E, Loya Y (2009) Chemical warfare in the sea: the search for antibiotics from Red Sea corals and sponges. Pure Appl Chem 81:1113–1121CrossRefGoogle Scholar
  107. Kenkel C, Aglyamova G, Alamaru A et al (2011) Development of gene expression markers of acute heat-light stress in reefbuilding corals of the genus Porites. PLoS One 6:e26914PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kenkel CD, Meyer E, Matz MV (2013) Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol Ecol 22:4322–4334PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kvennefors ECE, Leggat W, Kerr ATD, Hoegh-Guldberg O, Barnes AC (2010) Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev Comp Immunol 34(11):1219–1229PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kim K, Kim PD, Alker AP, Harvell CD (2000) Chemical resistance of gorgonian corals against fungal infections. Mar Biol 137:393–401CrossRefGoogle Scholar
  111. Kingsley RJ, Afif E, Cox BC, Kothari S, Kriechbaum K, Kuchinsky K, Neill AT, Puri AF, Kish VM (2003) Expression of heat shock and cold shock proteins in the Gorgonian Leptogorgia virgulata. J Exp Zool 296A:98–107CrossRefGoogle Scholar
  112. Knack BA, Iguchi A, Shinzato C, Hayward DC, Ball EE, Miller DJ (2008) Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evol Biol 8:136PubMedPubMedCentralCrossRefGoogle Scholar
  113. Koh EGL (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23:379–398CrossRefGoogle Scholar
  114. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B Biol Sci 280:20122328CrossRefGoogle Scholar
  115. Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257PubMedCrossRefPubMedCentralGoogle Scholar
  116. Kvennefors E, Leggat W, Hoegh-Guldberg O, Degnan B, Barnes A (2008) An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 32:1582–1592PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kvitt H, Kramarsky-Winter E, Maor-Landaw K, Zandbank K, Kushmaro A, Rosenfeld H, Fine M, Tchernov D (2015) Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc Natl Acad Sci U S A 112:2082–2086PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lawrence S, Davy J, Wilson W, Hoegh-Guldberg O, Davy S (2015) Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs 34:249–257CrossRefGoogle Scholar
  119. Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D et al (2011) Differential responses of the coral host and their algal symbiont to thermal stress. PLoS One 6:e26687PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedCrossRefPubMedCentralGoogle Scholar
  121. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  122. Libro S, Vollmer SV (2016) Genetic signature of resistance to white band disease in the Caribbean Staghorn coral Acropora cervicornis. PLoS One 11:e0146636PubMedPubMedCentralCrossRefGoogle Scholar
  123. Libro S, Kaluziak ST, Vollmer SV (2013) RNA-seq profiles of immune related genes in the Staghorn coral Acropora cervicornis infected with white band disease. PLoS One 8:e81821PubMedPubMedCentralCrossRefGoogle Scholar
  124. Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunol Rev 198:10–24PubMedPubMedCentralCrossRefGoogle Scholar
  125. Luna-Acosta A, Rosenfeld E, Amari M, Fruitier-Arnaudin I, Bustamante P, Thomas-Guyon H (2010) First evidence of laccase activity in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 4:719–716CrossRefGoogle Scholar
  126. Martin P, Leibovich SJ (2005) Inflammatory cells during wound, repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607PubMedCrossRefPubMedCentralGoogle Scholar
  127. Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100:185–188PubMedCrossRefPubMedCentralGoogle Scholar
  128. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428PubMedCrossRefPubMedCentralGoogle Scholar
  129. Medzhitov R, Janeway CA (2000a) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  130. Medzhitov R, Janeway JC (2000b) The toll receptor family and microbial recognition. Trends Microbiol 8:452–456PubMedCrossRefPubMedCentralGoogle Scholar
  131. Menzel LP, Bigger CH (2015) Identification of unstimulated constitutive immunocytes, by enzyme histochemistry, in the coenenchyme of the octocoral Swiftia exserta. Biol Bull 229:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  132. Meredith P, Powell BJ, Riesz J, Nighswander-Rempel SP, Pederson MR, Moore EG (2006) Towards structure-property-function relationships for eumelanin. Soft Matter 2:37–44CrossRefGoogle Scholar
  133. Merle PL, Sabourault C, Richier S, Allemand D, Furla P (2007) Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic Biol Med 42:236–246PubMedCrossRefPubMedCentralGoogle Scholar
  134. Meszaros A, Bigger C (1999) Qualitative and quantitative study of wound healing processes in the coelenterate, Plexaurella fusifera: spatial, temporal, and environmental (light attenuation) influences. J Invertebr Pathol 73:321–331PubMedCrossRefPubMedCentralGoogle Scholar
  135. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219PubMedPubMedCentralCrossRefGoogle Scholar
  136. Miller D, Hemmrich G, Ball E, Hayward D, Khalturin K, Funayama N, Agata K, Bosch T (2007) The innate immune repertoire in Cnidaria – ancestral complexity and stochastic gene loss. Genome Biol 8:R59PubMedPubMedCentralCrossRefGoogle Scholar
  137. Moya A, Huisman L, Foret S, Gattuso JP, Hayward DC, Ball E, Miller DJ (2015) Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock protein and Bcl-2 genes. Mol Ecol 24:438–452PubMedCrossRefPubMedCentralGoogle Scholar
  138. Moya A, Sakamaki K, Mason BM, Huisman L, Forêt S, Weiss Y, Bull TE, Tomii K, Imai K, Hayward DC, Ball EE, Miller DJ (2016) Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17:62PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mullen K, Peters EC, Harvell CD (2004) Coral resistance to disease. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 377–399CrossRefGoogle Scholar
  140. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  141. Mydlarz LD, Harvell CD (2007) Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp Biochem Physiol A Mol Integr Physiol 146:54–62PubMedCrossRefPubMedCentralGoogle Scholar
  142. Mydlarz LD, Jacobs RS (2006) An inducible release of reactive oxygen radicals in four species of gorgonian corals. Mar Freshw Behav Physiol 39:143–152CrossRefGoogle Scholar
  143. Mydlarz LD, Palmer CV (2011) The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol A Mol Integr Physiol 159:372–378PubMedCrossRefPubMedCentralGoogle Scholar
  144. Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One 3:e1811PubMedPubMedCentralCrossRefGoogle Scholar
  145. Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945PubMedCrossRefPubMedCentralGoogle Scholar
  146. Mydlarz LD, Fuess LE, Mann WT, Pinzón CJH, Gochfeld DJ (2016) Cnidarian immunity: from genomes to phenomes. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer, Cham, pp 441–466CrossRefGoogle Scholar
  147. Nakamura M, Morita M, Kurihara H, Mitarai S (2012) Expression of HSP70, HSP90 and HSF1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open 1:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  148. Neubauer EF, Poole AZ, Weis V, Davy SK (2016) The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ 4:e2692PubMedPubMedCentralCrossRefGoogle Scholar
  149. Nolan PM, Dobson FS, Dresp B, Jouventin P (2006) Immunocompetence is signalled by ornamental colour in king penguins, Aptenodytes patagonicus. Evol Ecol Res 8:1325–1332Google Scholar
  150. Nozawa H, Cho SY, Seki N (2001) Purification and characterization of transglutaminase from squid gill. Fish Sci 67:912–919CrossRefGoogle Scholar
  151. Ocampo ID, Zárate-Potes A, Pizarro V, Rojas CA, Vera NE, Cadavid LF (2015) The immunotranscriptome of the Caribbean reef-building coral Pseudodiploria strigosa. Immunogenetics 67:515–530PubMedCrossRefPubMedCentralGoogle Scholar
  152. Olano CT, Bigger CH (2000) Phagocytic activities of the gorgonian coral Swiftia exserta. J Invertebr Pathol 76:176–184PubMedCrossRefPubMedCentralGoogle Scholar
  153. Olsen K, Ritson-Williams R, Ochrietor JD, Paul VJ, Ross C (2013) Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar Biol 160:2609–2618CrossRefGoogle Scholar
  154. O'Neill LAJ, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13:453–460PubMedCrossRefPubMedCentralGoogle Scholar
  155. Otero-Gonzalez AJ, Magalhaes BS, Garcia-Villarino M, Lopez-Abarrategui C, Sousa DA, Dias SC, Franco OL (2010) Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 24:1320–1334PubMedCrossRefPubMedCentralGoogle Scholar
  156. Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men’shenin AV, Kokryakov VN (2006) Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun 348:514–523PubMedCrossRefPubMedCentralGoogle Scholar
  157. Palmer CV (2010) Biological mechanisms of Scleractinian immunity [Doctoral Thesis] James Cook University, Australia, Newcastle University, UKGoogle Scholar
  158. Palmer CV, Traylor-Knowles N (2012) Towards an integrated network of coral immune mechanisms. Proc R Soc B 279:4106–4114PubMedCrossRefPubMedCentralGoogle Scholar
  159. Palmer C, Mydlarz L, Willis B (2008) Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proc R Soc B 275:2687–2693PubMedCrossRefPubMedCentralGoogle Scholar
  160. Palmer CV, Roth MS, Gates RD (2009a) Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues. Biol Bull 215:68–74CrossRefGoogle Scholar
  161. Palmer CV, Modi CK, Mydlarz LD (2009b) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298PubMedPubMedCentralCrossRefGoogle Scholar
  162. Palmer CV, Bythell JC, Willis BL (2010) Immunity parameters of reef corals underpin bleaching and disease susceptibility. Fed Am Soc Exp Biol 24:1935–1946PubMedPubMedCentralGoogle Scholar
  163. Palmer CV, Bythell JC, Willis BL (2011a) A comparative study of phenoloxidase activity in diseased and bleached colonies of the coral Acropora millepora. Dev Comp Immunol 10:1098–1101CrossRefGoogle Scholar
  164. Palmer CV, Traylor-Knowles NG, Willis BL, Bythell JC (2011b) Corals use similar immune cells and wound-healing processes as those of higher organisms. PLoS One 6:e23992PubMedPubMedCentralCrossRefGoogle Scholar
  165. Palmer CV, McGinty ES, Cummings D, Bartels E, Mydlarz LD (2011c) Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. J Exp Biol 15:4240–4249CrossRefGoogle Scholar
  166. Palmer C, Bythell JC, Willis B (2012a) Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans. Proc R Soc Lond B Biol Sci:rspb20112487Google Scholar
  167. Palmer CV, Graham E, Baird AH (2012b) Immunity through early development of coral larvae. Dev Comp Immunol 38:395–399PubMedCrossRefPubMedCentralGoogle Scholar
  168. Palmer CV, Bythell JC, Willis BL (2012c) Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific corals. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2011.2487
  169. Palmer CV, Bythell JC, Willis BL (2012d) Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans. Proc R Soc B 279:3879–3887PubMedCrossRefPubMedCentralGoogle Scholar
  170. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898PubMedCrossRefPubMedCentralGoogle Scholar
  171. Parisi M, Trapani M, Cammarata M (2014) Granulocytes of sea anemone Actinia equina (Linnaeus, 1758) body fluid contain and release cytolysins forming plaques of lysis. ISJ 11:63Google Scholar
  172. Petes LE, Harvell CD, Peters EC, Webb MAH, Mullen KM (2003) Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar Ecol Prog Ser 264:167–171CrossRefGoogle Scholar
  173. Pey A, Zamoum T, Allemand D, Furla P, Merle P-L (2011) Depth-dependent thermotolerance of the symbiotic Mediterranean gorgonian Eunicella singularis: evidence from cellular stress markers. J Exp Mar Biol Ecol 404:73–78CrossRefGoogle Scholar
  174. Pinsino A, Matranga V (2015) Sea urchin immune cells as sentinels of environmental stress. Dev Comp Immunol 49:198–205PubMedCrossRefGoogle Scholar
  175. Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, Mydlarz LD (2015) Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci 2:140214PubMedPubMedCentralCrossRefGoogle Scholar
  176. Polato NR, Voolstra CR, Schnetzer J, Desalvo MK, Randall CJ (2010) Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata. PLoS One 5(6):e11221PubMedPubMedCentralCrossRefGoogle Scholar
  177. Poole AZ, Weis VM (2014) TIR-domain-containing protein repertoire of nine anthozoan species reveals coral–specific expansions and uncharacterized proteins. Dev Comp Immunol 46:480–488PubMedCrossRefPubMedCentralGoogle Scholar
  178. Poole AZ, Kitchen SA, Weis V (2016) The role of complement in Cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida. Front Microbiol 7:519PubMedPubMedCentralCrossRefGoogle Scholar
  179. Portune KJ, Voolstra CR, Medina M, Szmant A (2010) Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Mar Genomics 3:51–62PubMedCrossRefPubMedCentralGoogle Scholar
  180. Puill-Stephan E, Seneca FO, Miller DJ, van Oppen MJH, Willis BL (2012) Expression of putative immune response genes during early ontogeny in the coral Acropora millepora. PLoS One 7:e39099PubMedPubMedCentralCrossRefGoogle Scholar
  181. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94CrossRefPubMedGoogle Scholar
  182. Putnam HM, Mayfield AB, Fan TY, Chen CS, Gates RD (2013) The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near future increases in temperature and pCO2. Mar Biol 160:2157–2173CrossRefGoogle Scholar
  183. Quistad S, Traylor-Knowles N (2016) Precambrian origins of the TNFR superfamily. Cell Death Dis 2:16058CrossRefGoogle Scholar
  184. Quistad SD, Stotland A, Barott KL, Smurthwaite CA, Hilton BJ, Grasis JA, Wolkowicz R, Rohwer FL (2014) Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc Natl Acad Sci U S A 111:9567–9572PubMedPubMedCentralCrossRefGoogle Scholar
  185. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241PubMedCrossRefPubMedCentralGoogle Scholar
  186. Reitzel AM, Sullivan JC, Traylor-Knowles N, Finnerty JR (2008) Genomic survey of candidate stress-response genes in the esturine anemone Nematostella vectensis. Biol Bull 214:233–254PubMedCrossRefPubMedCentralGoogle Scholar
  187. Renegar D-EA, Blackwelder P, Miller J, Gochfeld D, Moulding AL (2008) Ultrastructural and histological analysis of Dark Spot Syndrome in Siderastrea siderea and Agaricia agaricitesGoogle Scholar
  188. Richier S, Rodriguez-Lanetty M, Schnitzler CE, Weis V (2008) Response of the symbiotic cnidarian Anthopleura elegantissima transcriptome to temperature and UV increase. Comp Biochem Physiol Part D 3:283–289Google Scholar
  189. Rinkevich B (1995) Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor Ecol 3:241–251CrossRefGoogle Scholar
  190. Rinkevich B (2014) Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr Opin Environ Sustain 7:28–36CrossRefGoogle Scholar
  191. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  192. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular response of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114PubMedCrossRefPubMedCentralGoogle Scholar
  193. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  194. Romano SL, Palumbi SR (1996) Evolution of Scleractinian corals inferred from molecular systematics. Science 271:640–642CrossRefGoogle Scholar
  195. Rose NH, Seneca FO, Palumbi SR (2015) Gene networks in the wild: identifying transcriptional modules that mediate coral resistance to experimental heat stress. Genome Biol Evol 8:243–252PubMedPubMedCentralCrossRefGoogle Scholar
  196. Rosental B, Kozhekbaeva Z, Fernhoff N, Tsai JM, Traylor-Knowles N (2017) Coral cell separation and isolation by Fluorescence-Activated Cell Sorting (FACS). BMC Cell Biol 18:30PubMedPubMedCentralCrossRefGoogle Scholar
  197. Ross C (2014) Nitric oxide and heat shock protein 90 co-regulate temperature-induced bleaching in the soft coral Eunicea fusca. Coral Reefs 33:513–522CrossRefGoogle Scholar
  198. Roth MS, Deheyn DD (2013) Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rep 3:1421PubMedPubMedCentralCrossRefGoogle Scholar
  199. Rough L, Downs CA, Richmond RH, Ostrander GK (2006) Alteration of normal cellular profiles in the scleractinian coral Pocillopora damicornis following laboratory exposure to fuel oil. Environ Toxicol Chem 25:3181–3187CrossRefGoogle Scholar
  200. Sadd BM, Schmid-Hempel P (2009) Principles of ecological immunology. Evol Appl 2:113–121PubMedCrossRefPubMedCentralGoogle Scholar
  201. Salih A, Hoegh-Guldberg O, Cox G (1998) Photoprotection of symbiotic Dinoflagellates by fluorescent pigments in reef corals. In: Greenwood JG, Hall NJ (eds) Proceedings of the Australian Coral Reef Society 75th Anniversary Conference, Heron Island October 1997. University of Queensland, Brisbane, pp 217–230Google Scholar
  202. Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852–2864PubMedCrossRefPubMedCentralGoogle Scholar
  203. Schnitzler CE, Weis VM (2010) Coral larvae exhibit few measurable transcriptional changes during the onset of coral-dinoflagellate endosymbiosis. Mar Genomics 3:107–116PubMedCrossRefPubMedCentralGoogle Scholar
  204. Schopmeyer SA (2012) In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor Ecol 20:696–703. -2012 v.2020 no.2016CrossRefGoogle Scholar
  205. Schwarz JA, Brokstein PB, Voolstra C, Terry A, Miller D, Szmant A, Coffroth MA, Medina M (2008) Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics 97:1471–2164Google Scholar
  206. Seneca FO, Palumbi SR (2015) The role of transcriptome resilience in resistance of corals to bleaching. Mol Ecol 24:1467–1484PubMedCrossRefPubMedCentralGoogle Scholar
  207. Seneca FO, Forêt S, Ball EE, Smith-Keune C, Miller DJ, Oppen MJH (2010) Patterns of gene expression in a scleractinian coral undergoing natural bleaching. Mar Biotechnol 12:594–604PubMedCrossRefPubMedCentralGoogle Scholar
  208. Seppala O, Jokela J (2011) Immune defence under extreme ambient temperature. Biol Lett 7:119–122PubMedCrossRefPubMedCentralGoogle Scholar
  209. Seveso D, Montano S, Giovanni S, Orlandi I, Vai M, Galli P (2012) Up-regulation of Hsp60 in response to skeleton eroding band disease but not by algal overgrowth in the scleractinian coral Acropora muricata. Mar Environ Res 78:34–e39PubMedCrossRefPubMedCentralGoogle Scholar
  210. Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M (2013) Over-expression of higHL: Intelectin-1y conserved mitochondrial 70-kDa heat-shock protein in the sea anemone Anemonia viridis. Mar Environ Res 90:96e103CrossRefGoogle Scholar
  211. Seveso D, Montano S, Reggente MAL, Orlandi I, Galli P, Vai M (2015) Modulation of Hsp60 in response to coral brown band disease. Dis Aquat Org 115:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  212. Seward HE, Bagshaw CR (2009) The photochemistry of fluorescent proteins: implications for their biological applications. Chem Soc Rev 38:2842–2851PubMedCrossRefPubMedCentralGoogle Scholar
  213. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248PubMedCrossRefPubMedCentralGoogle Scholar
  214. Shaked Y, Armoza-Zvuloni R (2013) Dynamics of hydrogen peroxide in a coral reef: sources and sinks. J Geophys Res Biogeo 118:1793–1801CrossRefGoogle Scholar
  215. Shapo JL, Moeller PD, Galloway SB (2007) Antimicrobial activity in the common seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae). Comp Biochem Physiol B: Biochem Mol Biol 148:65–73CrossRefGoogle Scholar
  216. Sharp VA, Miller D, Bythell JC (1994) Expression of low molecular weight HSP 70 related polypeptides from the symbiotic sea anemone Anemonia viridis Forskall in response to heat shock. J Exp Mar Biol Ecol 179:179–193CrossRefGoogle Scholar
  217. Sharp VA, Brown BE, Miller D (1997) Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis. J Therm Biol 22:11–19CrossRefGoogle Scholar
  218. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321PubMedCrossRefGoogle Scholar
  219. Sheridan C, Grosjean P, Leblud J, Palmer C, Kushmaro A, Eeckhaut I (2014) Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral. Coral Reefs 33:1067–1076CrossRefGoogle Scholar
  220. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320PubMedPubMedCentralCrossRefGoogle Scholar
  221. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183PubMedPubMedCentralCrossRefGoogle Scholar
  222. Siva-Jothy MT, Thompson JJW (2002) Short-term nutrient deprivation affects immune function. Physiol Entomol 27:206–212CrossRefGoogle Scholar
  223. Slattery M, Gochfeld DJ (2012) Chemically mediated competition and host–pathogen interactions among marine organisms handbook of marine natural products. Springer, Berlin, pp 823–859Google Scholar
  224. Slattery M, Renegar D, Gochfeld D (2013) Direct and indirect effects of a new disease of alcyonacean soft corals. Coral Reefs 32:879–889CrossRefGoogle Scholar
  225. Smith EG, D'angelo C, Sharon Y, Tchernov D, Wiedenmann J (2017) Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc R Soc B 284:20170320PubMedCrossRefPubMedCentralGoogle Scholar
  226. Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28PubMedCrossRefPubMedCentralGoogle Scholar
  227. Söderhäll K, Smith VJ (eds) (1986) The prophenoloxidase activating system: the biochemistry of its activation and role in arthropod cellular immunity, with special reference to crustaceans. Springer, BerlinGoogle Scholar
  228. Song L, Wang L, Zhang H, Wang M (2015) The immune system and its modulation mechanism in scallop. Fish Shellfish Immunol 46:65–78PubMedCrossRefPubMedCentralGoogle Scholar
  229. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185PubMedCrossRefPubMedCentralGoogle Scholar
  230. Stanley GD (2006) Photosymbiosis and the evolution of modern coral reefs. Science 312:857–858PubMedCrossRefPubMedCentralGoogle Scholar
  231. Stewart AK, Pavasovic A, Hock DH, Prentis PJ (2017) Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci Rep 7:41458PubMedPubMedCentralCrossRefGoogle Scholar
  232. Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 15:2–9PubMedCrossRefPubMedCentralGoogle Scholar
  233. Sullivan JC, Kalaitzidis D, DGilmore TD, Finnerty JR (2007) Rel homology domain-containing transcription factors in the cnidairan Nematostella vectensis. Dev Genes Evol 217:63–72PubMedCrossRefPubMedCentralGoogle Scholar
  234. Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD et al (2009) Two alleles of NF-κB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS One 10:e7311CrossRefGoogle Scholar
  235. Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringe JR, Weis V, Medina M, Schwarz J (2009) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258PubMedPubMedCentralCrossRefGoogle Scholar
  236. Sweet MJ, Croquer A, Bythell JC (2011) Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52CrossRefGoogle Scholar
  237. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215PubMedPubMedCentralCrossRefGoogle Scholar
  238. Takahashi D, Garcia BL, Kanost MR (2015) Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects. Proc Natl Acad Sci U S A 112:13856–13861PubMedPubMedCentralCrossRefGoogle Scholar
  239. Takahashi-Kariyazono S, Gojobori J, Satta Y, Sakai K, Terai Y (2016) Acropora digitifera encodes the largest known family of fluorescent proteins that has persisted during the evolution of Acropora species. Genome Biol Evol 8:3271–3283PubMedPubMedCentralCrossRefGoogle Scholar
  240. Tarrant AM (2015) Endocrine‐like signaling in corals. In: Woodley CM, Downs CA, Bruckner A, Porter J, Galloway SB (eds) Diseases of coral. John Wiley and Sons, Inc, p 138–149Google Scholar
  241. Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci U S A 108:9905–9909PubMedPubMedCentralCrossRefGoogle Scholar
  242. Teixeira T, Diniz M, Calado R, Rosa R (2013) Coral physiological adaptations to air exposure: heat shock and oxidative stress responses in Veretillum cynomorium. J Exp Mar Biol Ecol 439:35–41CrossRefGoogle Scholar
  243. Tenor JL, Aballay A (2007) A conserved toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9:103PubMedPubMedCentralCrossRefGoogle Scholar
  244. Theopold U, Schmidt O, Soderhall K, Dushay MS (2004) Coagulation in arthropods: defence, wound closure and healing. Trends Immunol 25:289–294PubMedCrossRefPubMedCentralGoogle Scholar
  245. Tom M, Douek J, Yankelevich I, Bosch TC, Rinkevich B (1999) Molecular characterization of the first heat shock protein 70 from a reef coral. Biochem Biophys Res Commun 262:103–108PubMedCrossRefPubMedCentralGoogle Scholar
  246. Tomanek L (2015) Proteomic responses to environmentally induced oxidative stress. J Exp Biol 218:1867–1879PubMedCrossRefPubMedCentralGoogle Scholar
  247. Traylor-Knowles N, Palumbi SR (2014) Translational environmental biology: cell biology informing conservation. Trends Cell Biol 24:265–267PubMedCrossRefPubMedCentralGoogle Scholar
  248. Traylor-Knowles N, Granger BR, Lubinski TJ, Parikh JR, Garamszegi S, Xia Y, Marto JA, Kaufman L, Finnerty JR (2011) Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis. BMC Genomics 12:585PubMedPubMedCentralCrossRefGoogle Scholar
  249. Traylor-Knowles N, Rose NH, Palumbi SR (2017a) The cell specificity of gene expression in the response to heat stress in corals. J Exp Biol 220:1837–1845PubMedCrossRefPubMedCentralGoogle Scholar
  250. Traylor-Knowles N, Rose NH, Sheets EA, Palumbi SR (2017b) Early transcriptional responses during heat stress in the coral Acropora hyacinthus. Biol Bull 232:91–100PubMedCrossRefPubMedCentralGoogle Scholar
  251. Van Alstyne KL, Wylie CR, Paul VJ (1994) Antipredator defenses in tropical Pacific soft corals (Coelenterata: Alcyonacea) II. The relative importance of chemical and structural defenses in three species of Sinularia. J Exp Mar Biol Ecol 178:17–34CrossRefGoogle Scholar
  252. van de Water JA, Leggat W, Bourne DG, van Oppen MJ, Willis BL, Ainsworth TD (2015a) Elevated seawater temperatures have a limited impact on the coral immune response following physical damage. Hydrobiologia 759:201–214CrossRefGoogle Scholar
  253. van de Water JAJM, Lamb JB, van Oppen M, Willis B, Bourne DG (2015b) Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. Conserv Physiol 3:cov032PubMedPubMedCentralCrossRefGoogle Scholar
  254. van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH (2015c) The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol 24:3390–3404PubMedCrossRefPubMedCentralGoogle Scholar
  255. van de Water JAJM, Lamb JB, Heron SF, van Oppen MJH, Willis BL (2016) Temporal patterns in innate immunity parameters in reef-building corals and linkages with local climatic conditions. Ecosphere 7:e01505. -n/aCrossRefGoogle Scholar
  256. van der Burg CA, Prentis PJ, Surm JM, Pavasovic A (2016) Insights into the innate immunome of actiniarians using a comparative genomic approach. BMC Genomics 17:850PubMedPubMedCentralCrossRefGoogle Scholar
  257. van der Most PJ, de Jong B, Parmentier HK, Verhulst S (2011) Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct Ecol 25:74–80CrossRefGoogle Scholar
  258. van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY, Cormick C, Crean A, Damjanovic K, Epstein H, Harrison PL, Jones TA, Miller M, Pears RJ, Peplow LM, Raftos DA, Schaffelke B, Stewart K, Torda G, Wachenfeld D, Weeks AR, Putnam HM (2017) Shifting paradigms in restoration of the world’s coral reefs. Glob Chang Biol 23:3437–3448PubMedCrossRefPubMedCentralGoogle Scholar
  259. Vargas-Angel B, Peters EC, Kramarsky-Winter E, Gilliam DS, Dodge RE (2007) Cellular reactions to sedimentation and temperature stress in the Caribbean coral Montastraea cavernosa. J Invertebr Pathol 95:140–145PubMedCrossRefPubMedCentralGoogle Scholar
  260. Venn AA, Quinn J, Jones RJ, Bodnar A (2009) P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquat Toxicol 93:188–195PubMedCrossRefPubMedCentralGoogle Scholar
  261. Vidal-Dupiol J, Adjeroud M, Roger E, Foure L, Duval D, Mone Y, Ferrier-Pages C, Tambutte E, Tambutte S, Zoccola D, Allemand D, Mitta G (2009) Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol 9:14PubMedPubMedCentralCrossRefGoogle Scholar
  262. Vidal-Dupiol J, Ladriere O, Meistertzheim AL, Foure L, Adjeroud M, Mitta G (2011a) Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus. J Exp Biol 214:1533–1545PubMedCrossRefPubMedCentralGoogle Scholar
  263. Vidal-Dupiol J, Ladriere O, Destoumieux-Garzon D, Sautiere PE, Meistertzheim AL, Tambutte E, Tambutte S, Duval D, Foure L, Adjeroud M (2011b) Innate immune responses of a scleractinian coral to vibriosis. J Biol Chem 286:22688–22698PubMedPubMedCentralCrossRefGoogle Scholar
  264. Vidal-Dupiol J, Dheilly NM, Rondon R, Grunau C, Cosseau C, Smith KM, Freitag M, Adjeroud M, Mitta G (2014) Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted Immuno-suppression response. PLoS One 9:e107672PubMedPubMedCentralCrossRefGoogle Scholar
  265. Voolstra C, Schnetzert J, Peshkin L, Randall CJ, Szmant A, Medina M (2009) Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics 10:627PubMedPubMedCentralCrossRefGoogle Scholar
  266. Voolstra CR, Sunagawa S, Matz MV, Bayer T, Aranda M, Buschiazzo E, DeSalvo MK, Lindquist E, Szmant AM, Coffroth MA, Medina M (2011) Rapid evolution of coral proteins responsible for interaction with the environment. PLoS One 6:e20392PubMedPubMedCentralCrossRefGoogle Scholar
  267. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059PubMedCrossRefPubMedCentralGoogle Scholar
  268. Weiss Y, Forêt S, Hayward DC, Ainsworth T, King R, Ball EE, Miller DJ (2013) The acute transcriptional response of the coral Acropora millepora to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants. BMC Genomics 14:400PubMedPubMedCentralCrossRefGoogle Scholar
  269. Wenger Y, Buzgariu W, Reiter S, Galliot B (2014) Injury-induced immune responses in hydra. Semin Immunol 26:277–294PubMedCrossRefPubMedCentralGoogle Scholar
  270. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704–708CrossRefPubMedGoogle Scholar
  271. Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol 6:270–277PubMedCrossRefPubMedCentralGoogle Scholar
  272. Wiens M, Ammar MSA, Nawar AH, Koziol C, Hassanein HMA, Eisinger M, Mullera IM, Mullera WEG (2000) Induction of heat-shock (stress) protein gene expression by selected natural and anthropogenic disturbances in the octocoral Dendronephthya klunzingeri. J Exp Mar Biol Ecol 245:265–276PubMedCrossRefPubMedCentralGoogle Scholar
  273. Williams DL, Bonilla M, Gladyshev VN, Salinas G (2013) Thioredoxin glutathione reductase-dependent redox networks in Platyhelminth parasites. Antioxid Redox Signal 19:735–745PubMedPubMedCentralCrossRefGoogle Scholar
  274. Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR, Gilmore TD (2011) Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol 31:1076–1087PubMedCrossRefPubMedCentralGoogle Scholar
  275. Wolenski FS, Bradham CA, Finnerty JR, Gilmore TD (2013) NF-κB is required for cnidocyte development in the sea anemone Nematostella vectensis. Dev Biol 373:205–215PubMedCrossRefPubMedCentralGoogle Scholar
  276. Won J, Rho B, Song J (2001) A phylogenetic study of the Anthozoa (phylum Cnidaria) based on morphological and molecular characters. Coral Reefs 20:39–50CrossRefGoogle Scholar
  277. Wood-Charlson E, Hollingsworth L, Krupp D, Weis V (2006) Lectin/glycan interactions play a role in recognition in coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993PubMedCrossRefPubMedCentralGoogle Scholar
  278. Wood-Charlson EM, Weis VM (2009) The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Dev Comp Immunol 33(8):881–889PubMedCrossRefPubMedCentralGoogle Scholar
  279. Wright RM, Kenkel CD, Dunn CE, Shilling EN, Bay LK, Matz MV (2017) Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci Rep 7:2609PubMedPubMedCentralCrossRefGoogle Scholar
  280. Yu X-Q, Kanost MR (2004) Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev Comp Immunol 28:891–900PubMedCrossRefPubMedCentralGoogle Scholar
  281. Zaragoza WJ, Krediet CJ, Meyer JL, Canas G, Ritchie KB, Teplitski M (2014) Outcomes of infections of sea anemone aiptasia pallida with Vibrio spp. pathogenic to corals. Microb Ecol 68:388–396PubMedCrossRefPubMedCentralGoogle Scholar
  282. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar
  283. Zhou Z et al (2017) Dual recognition activity of a rhamnose-binding lectin to pathogenic bacteria and zooxanthellae in stony coral Pocillopora damicornis. Dev Comp Immunol 70:88–93PubMedCrossRefPubMedCentralGoogle Scholar
  284. Zou J, Chang M, Nie P, Secombes CJ (2009) Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9:85PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Caroline V. Palmer
    • 1
  • Nikki G. Traylor-Knowles
    • 2
  1. 1.Guanacaste Dry Forest Conservation FundBuckland MonachorumUK
  2. 2.University of Miami, Rosenstiel School of Marine and Atmospheric ScienceMiamiUSA

Personalised recommendations