Mammalia: Chiroptera: Immunology of Bats

  • Michelle L. BakerEmail author
  • Tony Schountz


Bats are a large and diverse group comprising approximately 20% of all living mammalian species. They are the only mammals capable of powered flight and have many unique characteristics, including long lifespans, echolocation, and hibernation, and play key roles in insect control, pollination, and seed dispersal. The role of bats as natural reservoirs of a variety of high-profile viruses that are highly pathogenic in other susceptible species yet cause no clinical disease in bats has led to a resurgence of interest in their immune systems. Equally compelling is the urgency to understand the immune mechanisms responsible for the susceptibility of bats to the fungus responsible for white syndrome, which threatens to wipe out a number of species of North American bats. In this chapter we review the current knowledge in the field of bat immunology, focusing on recent highlights and the need for further investigations in this area.


Bats Chiroptera Immune Innate immunity Adaptive immunity Infection Virus Interferon Antibody Zoonosis Reservoir host 


  1. Ahn M, Cui J, Irving AT, Wang L-F (2016) Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci Rep 6:21722PubMedPubMedCentralGoogle Scholar
  2. Almeida MF, Martorelli LF, Aires CC, Sallum PC, Durigon EL, Massad E (2005) Experimental rabies infection in haematophagous bats Desmodus rotundus. Epidemiol Infect 133(3):523–527PubMedPubMedCentralGoogle Scholar
  3. Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, Ojeda-Flores R, Arrigo NC, Islam A, Ali Khan S, Hosseini P, Bogich TL, Olival KJ, Sanchez-Leon MD, Karesh WB, Goldstein T, Luby SP, Morse SS, Mazet JAK, Daszak P, Lipkin WI (2013) A strategy to estimate unknown viral diversity in mammals. MBio 4(5):e00598–e00513PubMedPubMedCentralGoogle Scholar
  4. Austad SN (2010) Methusaleh’s zoo: how nature provides us with clues for extending human health span. J Comp Pathol 142(Suppl 1):S10–S21PubMedGoogle Scholar
  5. Baker ML, Zhou P (2015) Bat immunology. In: Bats and viruses. Wiley, New York, pp 327–348Google Scholar
  6. Baker M, Tachedjian M, Wang L-F (2010) Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire. Immunogenetics 62(3):173–184PubMedPubMedCentralGoogle Scholar
  7. Baker ML, Schountz T, Wang LF (2013) Antiviral immune responses of bats: a review. Zoonoses Public Health 60:104–116PubMedGoogle Scholar
  8. Baker KS, Suu-Ire R, Barr J, Hayman DTS, Broder CC, Horton DL, Durrant C, Murcia PR, Cunningham AA, Wood JLN (2014) Viral antibody dynamics in a chiropteran host. J Anim Ecol 83(2):415–428PubMedGoogle Scholar
  9. Banerjee A, Rapin N, Bollinger T, Misra V (2017) Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 7(1):2232PubMedPubMedCentralGoogle Scholar
  10. Barclay RMR, Harder LM (2003) Life histories of bats: life in the slow lane. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, ChicagoGoogle Scholar
  11. Bean AGD, Baker, ML, Stewart CR, Cowled C, Deffrasnes C, Wang L-F, Lowenthal JW (2013) Studying immunity to zoonotic diseases in the natural host—keeping it real. Nat Rev Immunol 13:851PubMedGoogle Scholar
  12. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323(5911):227PubMedPubMedCentralGoogle Scholar
  13. Bratsch S, Wertz N, Chaloner K, Kunz TH, Butler JE (2011) The little brown bat, M. Lucifugus, displays a highly diverse VH, DH and JH repertoire but little evidence of somatic hypermutation. Dev Comp Immunol 35(4):421–430PubMedPubMedCentralGoogle Scholar
  14. Brook CE, Dobson AP (2015) Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol 23(3):172–180PubMedPubMedCentralGoogle Scholar
  15. Butler JE, Wertz N, Zhao Y, Zhang S, Bao Y, Bratsch S, Kunz TH, Whitaker Jr JO, Schountz T (2011) The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals. Dev Comp Immunol 35(3):273–284PubMedGoogle Scholar
  16. Butler J, Wertz N, Baker ML (2014) The immunoglobulin genes of bats. In: Kaushik AK, Pasman Y (eds) Comparative immunoglobulin genetics. Apple Academic Press, Toronto, pp 54–84Google Scholar
  17. Chakraborty AK, Chakravarty AK (1983) Dichotomy of lymphocyte population and cell mediated immune responses in a fruit bat, Pteropus giganteus. J Indian Inst Sci 64:157–168Google Scholar
  18. Chakraborty AK, Chakravarty AK (1984) Antibody-mediated immune response in the bat, Pteropus giganteus. Dev Comp Immunol 8(2):415–423PubMedGoogle Scholar
  19. Chakravarty AK, Paul BN (1987) Analysis of suppressor factor in delayed immune responses of a bat, Pteropus giganteus. Dev Comp Immunol 11(3):649–660PubMedGoogle Scholar
  20. Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, Rice CM, Jackson MW, Junk DJ, Stark GR (2013) IFN[beta]-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 32(20):2751–2763PubMedPubMedCentralGoogle Scholar
  21. Cogswell-Hawkinson A, Bowen R, James S, Gardiner D, Calisher CH, Adams R, Schountz T (2012) Tacaribe virus causes fatal infection of an ostensible host, the Jamaican fruit bat. J Virol 86:5791–5799PubMedPubMedCentralGoogle Scholar
  22. Cowled C, Baker M, Tachedjian M, Zhou P, Bulach D, Wang L-F (2011) Molecular characterisation of toll-like receptors in the black flying fox Pteropus alecto. Dev Comp Immunol 35(1):7–18PubMedPubMedCentralGoogle Scholar
  23. Cowled C, Baker M, Zhou P, Tachedjian M, Wang L-F (2012) Molecular characterisation of RIGI-like helicases in the black flying fox, Pteropus alecto. Dev Comp Immunol 36(4):657–664PubMedPubMedCentralGoogle Scholar
  24. Cowled C, Stewart CR, Likic VA, Friedländer MR, Tachedjian M, Jenkins KA, Tizard ML, Cottee P, Marsh GA, Zhou P, Baker ML, Bean AG, Wang L-f (2014) Characterisation of novel microRNAs in the black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics 15(1):682PubMedPubMedCentralGoogle Scholar
  25. Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, Tachedjian M, De Jong C, Virtue ER, Yu M, Bulach D, Liu J-P, Michalski WP, Middleton D, Field HE, Wang L-F (2009) Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One 4(12):e8266PubMedPubMedCentralGoogle Scholar
  26. Davis AD, Rudd RJ, Bowen RA (2007) Effects of aerosolized rabies virus exposure on bats and mice. J Infect Dis 195(8):1144–1150PubMedPubMedCentralGoogle Scholar
  27. De La Cruz-Rivera PC, Kanchwala M, Liang H, Kumar A, Wang LF, Xing C, Schoggins J (2017) The IFN response in bat cells consists of canonical and non-canonical ISGs with unique temporal expression kinetics. bioRxiv:167999;
  28. Epstein JH, Baker ML, Zambrana-Torrelio C, Middleton D, Barr JA, DuBovi E, Boyd V, Pope B, Todd S, Crameri G, Walsh A, Pelican K, Fielder MD, Davies AJ, Wang L-F, Daszak P (2013) Duration of maternal antibodies against canine distemper virus and Hendra virus in Pteropid bats. PLoS One 8(6):e67584PubMedPubMedCentralGoogle Scholar
  29. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL (2012) DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. elife 1:e00047PubMedPubMedCentralGoogle Scholar
  30. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J (2001) The natural history of Hendra and Nipah viruses. Microbes Infect 3(4):307–314PubMedPubMedCentralGoogle Scholar
  31. Field KA, Johnson JS, Lilley TM, Reeder SM, Rogers EJ, Behr MJ, Reeder DM (2015) The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog 11(10):e1005168PubMedPubMedCentralGoogle Scholar
  32. Fuchs J, Hölzer M, Schilling M, Patzina C, Schoen A, Hoenen T, Zimmer G, Marz M, Weber F, Müller MA, Kochs G (2017) Evolution and antiviral specificities of interferon-induced Mx proteins of bats against ebola, influenza, and other RNA viruses. J Virol 91(15):e00361–e00317PubMedPubMedCentralGoogle Scholar
  33. Gerrard DL, Hawkinson A, Sherman T, Modahl CM, Hume G, Campbell CL, Schountz T, Frietze S (2017) Transcriptomic signatures of Tacaribe virus-infected Jamaican fruit bats. mSphere 2(5):e00245–e00217PubMedPubMedCentralGoogle Scholar
  34. Greer DL, McMurray DN (1981) Pathogenesis of experimental histoplasmosis in the bat, Artibeus lituratus. Am J Trop Med Hyg 30(3):653–659PubMedPubMedCentralGoogle Scholar
  35. Guethlein LA, Norman PJ, Hilton HG, Parham P (2015) Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 267(1):259–282PubMedPubMedCentralGoogle Scholar
  36. Halpin K, Young PL, Field HE, Mackenzie JS (2000) Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 81(8):1927–1932PubMedPubMedCentralGoogle Scholar
  37. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Rahman SA, Hughes T, Smith C, Field HE, Daszak P (2011) Pteropid bats are confirmed as the reservoir hosts of Henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 85(5):946–951PubMedPubMedCentralGoogle Scholar
  38. Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P (2009) Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. J Immunol 182(6):3618–3627PubMedPubMedCentralGoogle Scholar
  39. Hatten BA, Allen R, Sulkin SE (1968) Immune response in Chiroptera to bacteriophage øX174. J Immunol 101(1):141–150PubMedPubMedCentralGoogle Scholar
  40. Hatten BA, Allen R, Sulkin SE (1970) Studies on the immune capabilities of Chiroptera. J Immunol 105(4):872–878PubMedPubMedCentralGoogle Scholar
  41. He G, He B, Racey P, Cui J (2010) Positive selection of the bat interferon alpha gene family. Biochem Genet 48(9):840–846PubMedGoogle Scholar
  42. He X, Korytář T, Schatz J, Freuling CM, Müller T, Köllner B (2014) Anti-lyssaviral activity of interferon κ and ω from the Serotine bat, Eptesicus serotinus. J Virol 88:5444–5454PubMedPubMedCentralGoogle Scholar
  43. Heesters BA, Myers RC, Carroll MC (2014) Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14(7):495–504PubMedGoogle Scholar
  44. Hoyt JR, Sun K, Parise KL, Lu G, Langwig KE, Jiang T, Yang S, Frick WF, Kilpatrick AM, Foster JT, Feng J (2016) Widespread bat white-nose syndrome fungus, northeastern China. Emerg Infect Dis 22(1):140–142PubMedPubMedCentralGoogle Scholar
  45. Iha K, Omatsu T, Watanabe S, Ueda N, Taniguchi S, Fujii H, Ishii Y, Kyuwa S, Akashi H, Yoshikawa Y (2009) Molecular cloning and sequencing of the cDNAs encoding the bat interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12p40, and tumor necrosis factor-alpha. J Vet Med Sci 71(12):1691–1695PubMedGoogle Scholar
  46. Iha K, Omatsu T, Watanabe S, Ueda N, Taniguchi S, Fujii H, Ishii Y, Kyuwa S, Akashi H, Yoshikawa Y (2010) Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9. J Vet Med Sci 72(2):217–220PubMedPubMedCentralGoogle Scholar
  47. Janardhana V, Tachedjian M, Crameri G, Cowled C, Wang L-F, Baker ML (2012) Cloning, expression and antiviral activity of IFNγ from the Australian fruit bat, Pteropus alecto. Dev Comp Immunol 36(3):610–618PubMedGoogle Scholar
  48. Kapusta A, Suh A, Feschotte C (2017) Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci 114(8):E1460–E1469PubMedPubMedCentralGoogle Scholar
  49. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1(2):e27PubMedCentralGoogle Scholar
  50. Kepler T, Sample C, Hudak K, Roach J, Haines A, Walsh A, Ramsburg E (2010) Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler. BMC Genomics 11(1):444PubMedPubMedCentralGoogle Scholar
  51. Kuzmin IV, Schwarz TM, Ilinykh PA, Jordan I, Ksiazek TG, Sachidanandam R, Basler CF, Bukreyev A (2017) Innate immune responses of bat and human cells to Filoviruses: commonalities and distinctions. J Virol 91(8):e02471–e02416PubMedPubMedCentralGoogle Scholar
  52. Langwig KE, Hoyt JR, Parise KL, Frick WF, Foster JT, Kilpatrick AM (2017) Resistance in persisting bat populations after white-nose syndrome invasion. Philos Trans R Soc B: Biol Sci 372(1712):20160044Google Scholar
  53. Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi H-W, Wong BHL, Wong SSY, Leung S-Y, Chan K-H, Yuen K-Y (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102(39):14040–14045PubMedPubMedCentralGoogle Scholar
  54. Lei M, Dong D (2016) Phylogenomic analyses of bat subordinal relationships based on transcriptome data. Sci Rep 6:27726PubMedPubMedCentralGoogle Scholar
  55. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Delicat A, Paweska JT, Gonzalez J-P, Swanepoel R (2005) Fruit bats as reservoirs of Ebola virus. Nature 438(7068):575–576PubMedPubMedCentralGoogle Scholar
  56. Loria-Cervera EN, Sosa-Bibiano EI, Villanueva-Lizama LE, Van Wynsberghe NR, Schountz T, Andrade-Narvaez FJ (2014) Cloning and sequence analysis of Peromyscus yucatanicus (Rodentia) Th1 (IL-12p35, IFN-γ and TNF) and Th2 (IL-4, IL-10 and TGF-β) cytokines. Cytokine 65(1):48–55PubMedGoogle Scholar
  57. Makanya A, John M (1994) The morphology of the intestine of the insectivorous horseshoe bat (Rhinolophus hildebrandti, Peters): a scanning electron and light microscopic study. Afr J Ecol 32:158–168Google Scholar
  58. McColl KA, Chamberlain T, Lunt RA, Newberry KM, Middleton D, Westbury HA (2002) Pathogenesis studies with Australian bat lyssavirus in grey-headed flying foxes (Pteropus poliocephalus). Aust Vet J 80(10):636–641PubMedGoogle Scholar
  59. McMurray D, Greer D (1979) Immune responses in bats following intranasal infection with histoplasma capsulatum. Am J Trop Med Hyg 28(6):1036–1039PubMedPubMedCentralGoogle Scholar
  60. McMurray DN, Thomas ME (1979) Cell-mediated immunity in two species of bats. J Mammal 60(3):576–581Google Scholar
  61. McMurray D, Stroud J, Murphy J, Carlomagno M, Greer D (1982) Role of immunoglobulin classes in experimental histoplasmosis in bats. Dev Comp Immunol 6(3):557–567PubMedPubMedCentralGoogle Scholar
  62. Meteyer CU, Barber D, Mandl JN (2012) Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence 3(7):583–588PubMedPubMedCentralGoogle Scholar
  63. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW (2007) Experimental Nipah virus infection in Pteropid bats (Pteropus poliocephalus). J Comp Pathol 136(4):266–272PubMedGoogle Scholar
  64. Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier RM, Kunz TH (2011) Specific alterations in complement protein activity of little Brown Myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites. PLoS One 6(11):e27430PubMedPubMedCentralGoogle Scholar
  65. Moore MS, Reichard JD, Murtha TD, Nabhan ML, Pian RE, Ferreira JS, Kunz TH (2013) Hibernating little Brown Myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome. PLoS One 8(3):e58976PubMedPubMedCentralGoogle Scholar
  66. Moratelli R, Calisher CH (2015) Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz 110:1–22PubMedPubMedCentralGoogle Scholar
  67. Ng JHJ, Tachedjian M, Deakin J, Wynne JW, Cui J, Haring V, Broz I, Chen H, Belov K, Wang L-F, Baker ML (2016) Evolution and comparative analysis of the bat MHC-I region. Sci Rep 6:21256PubMedPubMedCentralGoogle Scholar
  68. Ng JHJ, Tachedjian M, Wang L-F, Baker ML (2017) Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto. BMC Genomics 18:388PubMedPubMedCentralGoogle Scholar
  69. Omatsu T, Bak E-J, Ishii Y, Kyuwa S, Tohya Y, Akashi H, Yoshikawa Y (2008) Induction and sequencing of Rousette bat interferon α and β genes. Vet Immunol Immunopathol 124(1–2):169–176PubMedGoogle Scholar
  70. Papadimitriou HM, Swartz SM, Kunz TH (1996) Ontogenetic and anatomic variation in mineralization of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis. J Zool 240(3):411–426Google Scholar
  71. Papenfuss AT, Baker ML, Feng Z-P, Tachedjian M, Crameri G, Cowled C, Ng J, Janardhana V, Field HE, Wang L-F (2012) The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics 13:261PubMedPubMedCentralGoogle Scholar
  72. Paul BN, Chakravarty AK (1987) Phytohaemagglutinin mediated activation of bat (Pteropus giganteus) lymphocytes. Indian J Exp Biol 25(1):1–4PubMedGoogle Scholar
  73. Paweska JT, Jansen van Vuren P, Masumu J, Leman PA, Grobbelaar AA, Birkhead M, Clift S, Swanepoel R, Kemp A (2012) Virological and serological findings in <italic>Rousettus aegyptiacus</italic> experimentally inoculated with Vero cells-adapted Hogan strain of Marburg virus. PLoS One 7(9):e45479PubMedPubMedCentralGoogle Scholar
  74. Rapin N, Johns K, Martin L, Warnecke L, Turner JM, Bollinger TK, Willis CKR, Voyles J, Misra V (2014) Activation of innate immune-response genes in little Brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans. PLoS One 9(11):e112285PubMedPubMedCentralGoogle Scholar
  75. Sadler AJ, Williams BRG (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568PubMedPubMedCentralGoogle Scholar
  76. Sarkar SK, Chakravarty AK (1991) Analysis of immunocompetent cells in the bat, Pteropus giganteus: isolation and scanning electron microscopic characterization. Dev Comp Immunol 15(4):423–430PubMedGoogle Scholar
  77. Schountz T (2014) Immunology of bats and their viruses: challenges and opportunities. Virus 6(12):4880–4901Google Scholar
  78. Schountz T, Baker M, Butler J, Munster V (2017) Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol 8:1098PubMedPubMedCentralGoogle Scholar
  79. Schuh AJ, Amman BR, Jones MEB, Sealy TK, Uebelhoer LS, Spengler JR, Martin BE, Coleman-McCray JAD, Nichol ST, Towner JS (2017a) Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun 8:14446PubMedPubMedCentralGoogle Scholar
  80. Schuh AJ, Amman BR, Sealy TK, Spengler JR, Nichol ST, Towner JS (2017b) Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep 7:8763PubMedPubMedCentralGoogle Scholar
  81. Schwartz JC, Gibson MS, Heimeier D, Koren S, Phillippy AM, Bickhart DM, Smith TPL, Medrano JF, Hammond JA (2017) The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation. Immunogenetics 69(4):255–269PubMedPubMedCentralGoogle Scholar
  82. Shaw TI, Srivastava A, Chou W-C, Liu L, Hawkinson A, Glenn TC, Adams R, Schountz T (2012) Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensi). PLoS One 7(11):e48472PubMedPubMedCentralGoogle Scholar
  83. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DAM (eds) Mammal species of the world: a taxonomic and geographic reference. John Hopkins University Press, Baltimore, pp 312–529Google Scholar
  84. Stewart WE, II Allen R, Sulkin SE (1969) Persistent infection in bats and bat cell cultures with Japanese encephalitis virus. Bacteriol Proc 283:193Google Scholar
  85. Strobel S, Encarnação JA, Becker NI, Trenczek TE (2015) Histological and histochemical analysis of the gastrointestinal tract of the common pipistrelle bat (Pipistrellus Pipistrellus). Eur J Histochem: EJH 59(2):2477Google Scholar
  86. Sulkin SE, Allen R, Sims R, Singh KV (1966) Studies of arthropod-borne virus infections in Chiroptera. Am J Trop Med Hyg 15(3):418–427PubMedGoogle Scholar
  87. Szekeres-Bartho J (2002) Immunological relationship between the mother and the fetus. Int Rev Immunol 21(6):471–495PubMedGoogle Scholar
  88. Taylor ML, Chávez-Tapia CB, Rojas-Martínez A, del Rocio Reyes-Montes M, Del Valle MB, Zúñiga G (2005) Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico. FEMS Immunol Med Microbiol 45(3):451–458PubMedGoogle Scholar
  89. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403(6766):188–192PubMedGoogle Scholar
  90. Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584PubMedGoogle Scholar
  91. Teeling EC, Jones G, Rossiter SJ (2016) Phylogeny, genes, and hearing: implications for the evolution of echolocation in bats. In: Fenton MB, Grinnell AD, Popper AN, Fay RR (eds) Bat bioacoustics. Springer, New York, pp 25–54Google Scholar
  92. Teeling E, Vernes S, Davalos LM, Ray DA, Gilbert MTP, Myers E, Consortium BK (2018) Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu Rev Anim Biosci 6(1):23–46PubMedGoogle Scholar
  93. Towner JS, Amman BR, Sealy TK, Carroll SAR, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PBH, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5(7):e1000536PubMedPubMedCentralGoogle Scholar
  94. Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ (2013) Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr Biol 23(22):2262–2267PubMedPubMedCentralGoogle Scholar
  95. Turmelle A, Ellison J, Mendonça M, McCracken G (2010a) Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis). J Comp Physiol B: Biochem, Syst, Environ Physiol 180(8):1155–1164Google Scholar
  96. Turmelle AS, Jackson FR, Green D, McCracken GF, Rupprecht CE (2010b) Host immunity to repeated rabies virus infection in big brown bats. J Gen Virol 91(9):2360–2366PubMedPubMedCentralGoogle Scholar
  97. van Nierop K, de Groot C (2002) Human follicular dendritic cells: function, origin and development. Semin Immunol 14(4):251–257PubMedPubMedCentralGoogle Scholar
  98. Virtue ER, Marsh GA, Baker ML, Wang L-F (2011a) Interferon production and signaling pathways are antagonized during Henipavirus infection of fruit bat cell lines. PLoS One 6(7):e22488PubMedPubMedCentralGoogle Scholar
  99. Virtue ER, Marsh GA, Wang L-F (2011b) Interferon signaling remains functional during Henipavirus infection of human cell lines. J Virol 85(8):4031–4034PubMedPubMedCentralGoogle Scholar
  100. Wang L-F, Walker PJ, Poon LLM (2011) Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Curr Opin Virol 1(6):649–657PubMedPubMedCentralGoogle Scholar
  101. Wellehan JFX Jr, Green LG, Duke DG, Bootorabi S, Heard DJ, Klein PA, Jacobson ER (2009) Detection of specific antibody responses to vaccination in variable flying foxes (Pteropus hypomelanus). Comp Immunol Microbiol Infect Dis 32(5):379–394PubMedPubMedCentralGoogle Scholar
  102. Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW, Westbury HA, Murray PK (1998) Transmission studies of Hendra virus (equine morbilli-virus) in fruit bats, horses and cats. Aust Vet J 76(12):813–818PubMedPubMedCentralGoogle Scholar
  103. Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF (1999) Experimental Hendra virus infection in pregnant Guinea-pigs and fruit bats (Pteropus poliocephalus). J Comp Pathol 122(2–3):201–207Google Scholar
  104. Wynne JW, Di Rubbo A, Shiell BJ, Beddome G, Cowled C, Peck GR, Huang J, Grimley SL, Baker ML, Michalski WP (2013) Purification and characterisation of immunoglobulins from the Australian black flying fox (Pteropus alecto) using anti-fab affinity chromatography reveals the low abundance of IgA. PLoS One 8(1):e52930PubMedPubMedCentralGoogle Scholar
  105. Wynne JW, Shiell BJ, Marsh G, Boyd V, Harper J, Heesom K, Monaghan P, Zhou P, Payne J, Klein J, Todd S, Mok L, Green D, Bingham J, Tachedjian M, Baker ML, Matthews D, Wang LF (2014) Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL mediated apoptosis. Genome Biol 15:532PubMedPubMedCentralGoogle Scholar
  106. Wynne JW, Woon AP, Dudek NL, Croft NP, Ng JHJ, Baker ML, Wang L-F, Purcell AW (2016) Characterization of the antigen processing machinery and endogenous peptide presentation of a bat MHC class I molecule. J Immunol 196(11):4468–4476PubMedPubMedCentralGoogle Scholar
  107. Wynne JW, Todd S, Boyd V, Tachedjian M, Klein R, Shiell B, Dearnley M, McAuley AJ, Woon AP, Purcell AW, Marsh GA, Baker ML (2017) Comparative transcriptomics highlights the role of the AP1 transcription factor in the host response to Ebolavirus. J Virol 91:e01174–e01117PubMedPubMedCentralGoogle Scholar
  108. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T (2001) Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7(3):439–441PubMedPubMedCentralGoogle Scholar
  109. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang L-F, Wang J (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339(6118):456–460PubMedPubMedCentralGoogle Scholar
  110. Zhang Q, Zeng L-P, Zhou P, Irving AT, Li S, Shi Z-L, Wang L-F (2017) IFNAR2-dependent gene expression profile induced by IFN-α in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection. PLoS One 12(8):e0182866PubMedPubMedCentralGoogle Scholar
  111. Zhou P, Cowled C, Todd S, Crameri G, Virtue ER, Marsh GA, Klein R, Shi Z, Wang LF, Baker ML (2011a) Type III IFNs in pteropid bats: differential expression patterns provide evidence for distinct roles in antiviral immunity. J Immunol 186(5):3138–3147PubMedPubMedCentralGoogle Scholar
  112. Zhou P, Cowled C, Marsh GA, Shi Z, Wang L-F, Baker ML (2011b) Type III IFN receptor expression and functional characterisation in the Pteropid bat, Pteropus alecto. PLoS One 6(9):e25385PubMedPubMedCentralGoogle Scholar
  113. Zhou P, Cowled C, Wang L-F, Baker ML (2013) Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection. Dev Comp Immunol 40(3–4):240–247PubMedGoogle Scholar
  114. Zhou P, Cowled C, Mansell A, Monaghan P, Green D, Wu L, Shi Z, Wang L-F, Baker ML (2014) IRF7 in the Australian black flying fox, Pteropus alecto: evidence for a unique expression pattern and functional conservation. PLoS One 9(8):e103875PubMedPubMedCentralGoogle Scholar
  115. Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, Cowled C, Ng JHJ, Mok L, Michalski WP, Mendenhall IH, Tachedjian G, Wang L-F, Baker ML (2016a) Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci 113(10):2696–2701PubMedGoogle Scholar
  116. Zhou P, Chionh YT, Irac SE, Ahn M, Jia Ng JH, Fossum E, Bogen B, Ginhoux F, Irving AT, Dutertre C-A, Wang L-F (2016b) Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages. Sci Rep 6:38597PubMedPubMedCentralGoogle Scholar
  117. Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, Kovacova V, Kubátová A, Nováková A, Orlov O, Pikula J, Presetnik P, Šuba J, Zahradníková Jr A, Martínková N (2016) White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep 6:19829PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIRO Health and Biosecurity Business Unit, Australian Animal Health LaboratoryGeelongAustralia
  2. 2.Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and PathologyCollege of Veterinary Medicine and Biomedical Sciences, Colorado State UniversityFort CollinsUSA

Personalised recommendations