Echinodermata: The Complex Immune System in Echinoderms

  • L. Courtney Smith
  • Vincenzo Arriza
  • Megan A. Barela Hudgell
  • Gianpaolo Barone
  • Andrea G. Bodnar
  • Katherine M. Buckley
  • Vincenzo Cunsolo
  • Nolwenn M. Dheilly
  • Nicola Franchi
  • Sebastian D. Fugmann
  • Ryohei Furukawa
  • Jose Garcia-Arraras
  • John H. Henson
  • Taku Hibino
  • Zoe H. Irons
  • Chun Li
  • Cheng Man Lun
  • Audrey J. Majeske
  • Matan Oren
  • Patrizia Pagliara
  • Annalisa Pinsino
  • David A. Raftos
  • Jonathan P. Rast
  • Bakary Samasa
  • Domenico Schillaci
  • Catherine S. Schrankel
  • Loredana Stabili
  • Klara Stensväg
  • Elisse Sutton


The Echinodermata are an ancient phylum of benthic marine invertebrates with a dispersal-stage planktonic larva. These animals have innate immune systems characterized initially by clearance of foreign particles, including microbes, from the body cavity of both larvae and adults, and allograft tissue rejection in adults. Immune responsiveness is mediated by a variety of adult coelomocytes and larval mesenchyme cells. Echinoderm diseases from a range of pathogens can lead to mass die-offs and impact aquaculture, but some individuals can recover. Genome sequences of several echinoderms have identified genes with immune function, including expanded families of Toll-like receptors, NOD-like receptors, and scavenger receptors with cysteine-rich domains, plus signaling pathways and cytokines. The set of transcription factors that regulate proliferation and differentiation of the cellular immune system are conserved and indicate the ancestral origins of hematopoiesis. Both larval and adult echinoderms are in constant contact with potential pathogens in seawater, and they respond to infection by phagocytosis and encapsulation, and employ proteins that function in immune detection and response. Antipathogen responses include activation of the SpTransformer genes, a complement system, and the production of many types of antimicrobial peptides. Echinoderms have homologues of the recombinase activating genes plus all associated genes that function in vertebrates for immunoglobulin gene family rearrangement, although their gene targets are unknown. The echinoderm immune system has been characterized as unexpectedly complex, robust, and flexible. Many echinoderms have very long life-spans that correlate with an excellent capacity for cell damage repair. In many marine ecosystems, echinoderms are keystone predators and herbivores, and therefore are species that can serve as optimal sentinels of environmental health. Coelomocytes can be employed in sensor systems to test for the presence of marine pollutants. When Elie Metchnikoff inserted a rose prickle into a larval sea star and observed chemotaxis, phagocytosis, and encapsulation by the mesenchyme cells, he initiated not only the field of immunology but also that of comparative immunology, of which the echinoderms have been an important part.


Echinoidea Asteroidea Holothuroidea Ophiuroidea Crinoidea Sea urchins Sea stars Sea cucumbers Brittle stars Sea lilies Diseases Genomics Proteomics Coelomocytes Larval immune cells Immune development Immune responses Senescence Immuno-toxicology 



This work is dedicated to Valeria Matranga who passed away too young in April 2016 after a long and courageous battle against cancer. Valeria contributed immensely to our understanding of cellular and molecular immune processes in the sea urchin, Paracentrotus lividus. Her dedicated research on echinoderms led to an understanding of how they interact with their environment and how coelomocytes can be employed to evaluate environmental toxins and pollutants. She and her insight for creative approaches in eco-immuno-toxicology will be missed because her approach to thinking about how to answer difficult scientific questions would have been more and more valuable in the future.

AcknowledgementsResearch by the authors that was the basis of some of the information integrated into this chapter was supported by funding from the US National Science Foundation to LCS, DAR, MO, and JHH; the National Institute on Aging, a Bermuda charitable trust, and The Christian Humann Foundation to AGB; the European Molecular Biology Organization to NF; the Keio Gijuku Academic Development Funds to RF; the Chang Gung Medical Research Program and the Ministry of Science and Technology to SDF; HORIZON 2020 – The EU Framework Programme for Research and Innovation under the Marie Skłodowska-Curie Actions to AP; the Australian Research Council to DAR; the Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada to JPR; and the Tromsø Forskninsgstiftelse and the UiT The Arctic University of Norway to KS.


  1. Al-Sharif WZ, Sunyer JO, Lambris JD, Smith LC (1998) Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 160:2983–2997PubMedGoogle Scholar
  2. Anderluh G, Kisovec M, Kraševec N, Gilbert RJC (2014) Distribution of MACPF/CDC proteins. Subcell Biochem 80:7–30PubMedCrossRefGoogle Scholar
  3. Andersen JH, Murray C, Larsen MM, Green N, Høgåsen T, Dahlgren E, Garnaga-Budrė G, Gustavson K, Haarich M, Kallenbach EM, Mannio J, Strand J, Korpinen S (2016) Development and testing of a prototype tool for integrated assessment of chemical status in marine environments. Environ Monit Assess 188(2):115PubMedCrossRefGoogle Scholar
  4. Ariki S, Takahara S, Shibata T, Fukuoka T, Ozaki A, Endo Y, Fujita T, Koshiba T, Kawabata S-I (2008) Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J Immunol 181:7994–8001PubMedCrossRefGoogle Scholar
  5. Arizza V, Giaramita FT, Parrinello D, Cammarata M, Parrinello N (2007) Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comp Biochem Physiol A Mol Integr Physiol 147:389–394PubMedCrossRefGoogle Scholar
  6. Arnone MI, Byrne M, Martinez P (2015) Echinodermata. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 6: deuterostomia. Springer-Verlag, WeinGoogle Scholar
  7. Bak R, Carpay M, de Ruyter van Steveninck E (1984) Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curaqao. Mar Ecol 1:105–108CrossRefGoogle Scholar
  8. Bates A, Hilton B, Harley C (2009) Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Dis Aquat Org 86:245–251PubMedCrossRefGoogle Scholar
  9. Bauer JC, Agerter CJ (1987) Isolation of bacteria pathogenic for the sea urchin Diadema antillarum (Echinodermata: Echinoidea). Bull Mar Sci 40:161–165Google Scholar
  10. Bauer JC, Agerter CJ (1994) Isolation of potentially pathogenic bacterial flora from tropical sea urchins in selected West Atlantic and East Pacific sites. Bull Mar Sci 55:142–150Google Scholar
  11. Beauregard KA, Truong NT, Zhang H, Lin W, Beck G (2001) The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa. Adv Exp Med Biol 484:55–62Google Scholar
  12. Becker PT, Gillan DC, Eeckhaut I (2007) Microbiological study of the body wall lesions of the echinoid Tripneustes gratilla. Dis Aquat Org 77(1):73–82PubMedCrossRefGoogle Scholar
  13. Becker PT, Egea E, Eeckhaut I (2008) Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus. J Invertebr Pathol 98(2):136–147PubMedCrossRefGoogle Scholar
  14. Beddingfield SD, McClintock JB (2000) Demographic characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from three habitats in North Florida Bay, Gulf of Mexico. Mar Ecol 21:17–40CrossRefGoogle Scholar
  15. Bertheussen K (1981a) Endocytosis by echinoid phagocytes in vitro. II. Mechanisms of endocytosis. Dev Comp Immunol 5:557–564PubMedCrossRefGoogle Scholar
  16. Bertheussen K (1981b) Endocytosis by echinoid phagocytosis in vitro. I. Recognition of foreign matter. Dev Comp Immunol 5:241–250PubMedCrossRefGoogle Scholar
  17. Bertheussen K (1982) Receptors for complement on echinoid phagocytes. II. Purified human complement mediates echinoid phagocytosis. Dev Comp Immunol 6:635–642PubMedCrossRefGoogle Scholar
  18. Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7:21–31PubMedCrossRefGoogle Scholar
  19. Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cell Res 111:401–412PubMedCrossRefGoogle Scholar
  20. Bertheussen K, Seljelid R (1982) Receptors for complement on echinoid phagocytes. I. The opsonic effect of vertebrae sera on echinoid phagocytosis. Dev Comp Immunol 6:423–431PubMedCrossRefGoogle Scholar
  21. Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22(11):2275–2284PubMedCrossRefGoogle Scholar
  22. Blanchette C, Richards D, Engle J, Broitman B, Gaines S (2005) Regime shifts, community change and population booms of keystone predators at the Channel Islands. In: Proceedings of the California Islands SymposiumGoogle Scholar
  23. Blois J, Zarnetske P, Fitzpatrick M, Finnegan S (2013) Climate change and the past, present, and future of biotic interactions. Science 341:499–504PubMedCrossRefGoogle Scholar
  24. Bodnar AG, Coffman JA (2016) Maintenance of somatic regenerative capacity with age in short- and long-lived species of sea urchins. Aging Cell 15(4):778–787PubMedPubMedCentralCrossRefGoogle Scholar
  25. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61(7):2978–2984PubMedPubMedCentralGoogle Scholar
  26. Boolootian RA, Giese AC (1958) Coelomic corpuscles of echinoderms. Biol Bull 115:53–63CrossRefGoogle Scholar
  27. Boolootian RA, Giese AC (1959) Clotting of echinoderm coelomic fluid. J Exp Zool 140:207–229PubMedCrossRefGoogle Scholar
  28. Boraschi D, Costantino L, Italiani P (2012) Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine 7:121–131PubMedCrossRefGoogle Scholar
  29. Böttger SA, McClintock JB (2009) The effects of chronic inorganic and organic phosphate exposure on bactericidal activity of the coelomic fluid of the sea urchin sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Comp Biochem Physiol Part C 150:39–44Google Scholar
  30. Brockton V, Henson JH, Raftos DA, Majeske AJ, Kim Y-O, Smith LC (2008) Localization and diversity of 185/333 proteins from the purple sea urchin—unexpected protein-size range and protein expression in a new coelomocyte type. J Cell Sci 121(3):339–348PubMedCrossRefGoogle Scholar
  31. Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225PubMedPubMedCentralGoogle Scholar
  32. Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The antibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42(1):154–160PubMedPubMedCentralGoogle Scholar
  33. Buckley KM, Rast JP (2011) Characterizing immune receptors from new genome sequences. Methods Mol Biol 748:273–298PubMedCrossRefGoogle Scholar
  34. Buckley KM, Rast JP (2012) Dynamic evolution of Toll-like receptor multigene families in echinoderms. Front Immunol 3:136PubMedPubMedCentralCrossRefGoogle Scholar
  35. Buckley KM, Rast JP (2015) Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Dev Comp Immunol 49(1):179–189PubMedCrossRefGoogle Scholar
  36. Buckley KM, Smith LC (2007) Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC Mol Biol 8:68PubMedPubMedCentralCrossRefGoogle Scholar
  37. Buckley KM, Munshaw S, Kepler T, Smith LC (2008a) The 185/333 gene family is a rapidly diversifying host-defense gene cluster in the purple sea urchin Strongylocentrotus purpuratus. J Mol Biol 379(4):912–928Google Scholar
  38. Buckley KM, Terwilliger DP, Smith LC (2008b) Sequence variations in 185/333 messages from the purple sea urchin suggest post-transcriptional modifications to increase immune diversity. J Immunol 181:8585–8594PubMedCrossRefGoogle Scholar
  39. Buckley KM, Ho ECH, Hibino T, Schrankel CS, Schuh NW, Wang G, Rast JP (2017) IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. elife 6:e23481PubMedPubMedCentralCrossRefGoogle Scholar
  40. Burge C, Eakin C, Friedman C, Froelich B, Hershberger P, Hofmann E, Petes L, Prager K, Weil E, Willis B, Ford S, Harvell C (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277CrossRefGoogle Scholar
  41. Calestani C, Rogers DJ (2010) Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase. Dev Biol 340(2):249–255PubMedPubMedCentralCrossRefGoogle Scholar
  42. Calestani C, Rast JP, Davidson EH (2003) Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130(19):4587–4596PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37(suppl 1):D750–D754PubMedPubMedCentralCrossRefGoogle Scholar
  44. Canicatti C, D’Ancona G (1989) Cellular aspects of Holothuria polii immune response. J Invertebr Pathol 53:152–158Google Scholar
  45. Carmona LM, Fugmann SD, Schatz DG (2016) Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes Dev 30:909–917PubMedPubMedCentralCrossRefGoogle Scholar
  46. Carpenter RC (1988) Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. PNAS 85(2):511–514PubMedCrossRefGoogle Scholar
  47. Carpenter RC (1990) Mass mortality of Diadema antillarum. 1. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar Biol 104(1):67–77CrossRefGoogle Scholar
  48. Castillo MG, Goodson MS, McFall-Ngai M (2009) Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev Comp Immunol 33(1):69–76PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chia F, Xing J (1996) Echinoderm coelomocytes. Zool Stud 35:231–254Google Scholar
  50. Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309(5734):581–585PubMedCrossRefGoogle Scholar
  51. Clow LA, Gross PS, Shih CS, Smith LC (2000) Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics 51(12):1021–1033PubMedCrossRefGoogle Scholar
  52. Clow LA, Raftos DA, Gross PS, Smith LC (2004) The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol 207:2147–2155PubMedCrossRefGoogle Scholar
  53. Coffaro KA, Hinegardner RT (1977) Immune response in the sea urchin Lytechinus pictus. Science 197(4311):1389–1390PubMedCrossRefGoogle Scholar
  54. Coleman J, Inukai M, Inouye M (1985) Dual functions of the signal peptide in protein transfer across the membrane. Cell 43(1):351–360PubMedCrossRefGoogle Scholar
  55. Connon RE, Geist J, Werne I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Biosensors 12(9):12741–12771Google Scholar
  56. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefPubMedCentralGoogle Scholar
  57. Coteur G, DeBecker G, Warnau M, Jangoux M, Dubois P (2002a) Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata). Eur J Cell Biol 81(7):413–418PubMedCrossRefGoogle Scholar
  58. Coteur G, Warnau M, Jangoux M, Dubois P (2002b) Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata). Fish Shellfish Immunol 12(3):187–200PubMedCrossRefGoogle Scholar
  59. Coteur G, Gosselin P, Wantier P, Chambost-Manciet Y, Danis B, Pernet P, Warnau M, Dubois P (2003a) Echinoderms as bioindicators, bioassays, and impact assessment tools of sediment-associated metals and PCBs in the North Sea. Arch Environ Contam Toxicol 45(2):190–202PubMedCrossRefGoogle Scholar
  60. Coteur G, Gillan D, Joly G, Pernet P, Dubois P (2003b) Field contamination of the starfish Asterias rubens by metals. Part 2: effects on cellular immunity. Environ Toxicol Chem 22(9):2145–2151Google Scholar
  61. Danis B, Goriely S, Dubois P, Fowler SW, Flamand V, Warnau M (2004a) Contrasting effects of coplanar versus noncoplanar PCB congeners on immunomodulation and CYP1A levels (determined using an adapted ELISA method) in the common sea star Asterias rubens L. Aquat Toxicol 69(4):371–383PubMedCrossRefGoogle Scholar
  62. Danis B, Cotret O, Teyssié JL, Fowler SW, Warnau M (2004b) Coplanar PCB 77 uptake kinetics in the sea star Asterias rubens and subsequent effects on reactive oxygen species (ROS) production and levels of cytochrome P450 immunopositive proteins (CYP1A-IPP). Mar Ecol Prog Ser 279:117–128CrossRefGoogle Scholar
  63. Danis B, Wantier P, Flammang R, Pernet P, Chambost-Manciet Y, Coteur G, Warnau M, Dubois P (2006) Bioaccumulation and effects of PCBs and heavy metals in sea stars (Asterias rubens, L.) from the North Sea: a small scale perspective. Sci Total Environ 356(1–3):275–289PubMedCrossRefGoogle Scholar
  64. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Schilstra MJ, Clarke PJ, Rust AG, Pan Z, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 246(1):162–190PubMedCrossRefGoogle Scholar
  65. Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23(43):7233–7246PubMedCrossRefGoogle Scholar
  66. Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612PubMedCrossRefGoogle Scholar
  67. de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock REW (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589PubMedCrossRefGoogle Scholar
  68. de Latour RA, Amer LS, Papanstasiou EA, Bishop BM, van Hoek ML (2010) Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem Biophys Res Commun 396:825–830PubMedCrossRefGoogle Scholar
  69. De Pooter R (2010) E proteins and the regulation of early lymphocyte development. Immunol Rev 238:93–109PubMedPubMedCentralCrossRefGoogle Scholar
  70. Dempsey CE, Ueno S, Avison MB (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42(2):402–409PubMedCrossRefGoogle Scholar
  71. Deng H, He C, Zhou Z, Liu C, Tan K, Wang N, Jiang B, Gao X, Liu W (2009) Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture 287(1–2):18–27CrossRefGoogle Scholar
  72. Dev S, Robinson JJ (2014) Comparative biochemical analysis of the major yolk protein in the sea urchin egg and coelomic fluid. Dev Growth Differ 56(6):480–490PubMedCrossRefGoogle Scholar
  73. Dewan PC, Anantharaman A, Chauhan VS, Sahal D (2009) Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry 48(24):5642–5657PubMedCrossRefGoogle Scholar
  74. Dheilly NM, Nair SV, Smith LC, Raftos DA (2009) Highly variable immune response proteins (185/333) from the sea urchin, Strongylocentrotus purpuratus: proteomic analysis identifies diversity within and between individuals. J Immunol 182:2203–2212PubMedCrossRefGoogle Scholar
  75. Dheilly NM, Birch D, Nair SV, Raftos DA (2011a) Ultrastructural localization of highly variable 185/333 immune response proteins in the coelomocytes of the sea urchin, Heliocidaris erythrogramma. Immunol Cell Biol 89:861–869PubMedCrossRefGoogle Scholar
  76. Dheilly NM, Haynes PA, Bove U, Nair SV, Raftos DA (2011b) Comparative proteomic analysis of a sea urchin (Heliocidaris erythrogramma) antibacterial response revealed the involvement of apextrin and calreticulin. J Invertebr Pathol 106(2):223–229PubMedCrossRefGoogle Scholar
  77. Dheilly NM, Haynes PA, Raftos DA, Nair SV (2012) Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma. Dev Comp Immunol 37(2):243–256PubMedCrossRefGoogle Scholar
  78. Dheilly NM, Raftos DA, Haynes PA, Smith LC, Nair SV (2013) Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. Dev Comp Immunol 40(1):35–50PubMedCrossRefGoogle Scholar
  79. Dheilly NM, Coen A, Raftos DA, Benjamin G, Christoph G, Louis DP (2014) No more non-model species: the promise of next generation sequencing for comparative immunology. Dev Comp Immunol 45(1):56–66PubMedPubMedCentralCrossRefGoogle Scholar
  80. Dishaw LJ, Smith SL, Bigger CH (2005) Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 57(7):535–548PubMedCrossRefGoogle Scholar
  81. Du C, Anderson A, Lortie M, Parsons R, Bodnar A (2013) Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med 63:254–263PubMedPubMedCentralCrossRefGoogle Scholar
  82. Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T (2010) Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137(2):223–235PubMedCrossRefGoogle Scholar
  83. Dungan ML, Miller TE, Thomson DA (1982) Catastrophic decline of a top carnivore in the gulf of California rocky intertidal zone. Science 216(4549):989–991PubMedCrossRefGoogle Scholar
  84. Ebert TA (2007) Growth and survival of post-settlement sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, 2nd edn. Elsevier, Amsterdam, pp 95–134CrossRefGoogle Scholar
  85. Ebert TA (2008) Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol 43:734–738PubMedCrossRefGoogle Scholar
  86. Ebert TA (2010) Demographic patterns of the purple sea urchin Strongylocentrotus purpuratus along a latitudinal gradient, 1985–1987. Mar Ecol Prog Ser 406:105–120CrossRefGoogle Scholar
  87. Ebert TA, Southon JR (2003) Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14carbon. Fish Bull 101(4):915–922Google Scholar
  88. Ebert TA, Russell MP, Gamba G, Bodnar A (2008) Growth, survival, and longevity estimates for the rock-boring sea urchin Echinometra lucunter lucunter (Echinodermata, Echinoidea) in Bermuda. Bull Mar Sci 82(3):381–403Google Scholar
  89. Eckert GJ, Engle J, Kushner D (1999) Sea star disease and population declines at the Channel Islands. In: Proceedings of the fifth California Island symposium, US Minerals Management Service, pp 390–394Google Scholar
  90. Edds KT (1977) Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Pathol 73:479–491Google Scholar
  91. Edds KT (1993) Cell biology of echinoid coelomocytes. Diversity and characterization of cell types. J Invertebr Biol 61:173–178CrossRefGoogle Scholar
  92. Edmunds P, Carpenter R (2001) Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci U S A 98(9):5067–5071PubMedPubMedCentralCrossRefGoogle Scholar
  93. El-Bibany AH, Bodnar AG, Reinardy HC (2014) Comparative DNA damage and repair in echinoderm coelomocytes exposed to genotoxicants. PLoS One 9(9):e107815PubMedPubMedCentralCrossRefGoogle Scholar
  94. Eliseikina MG, Magarlamov TY (2002) Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russ J Mar Biol 28:197–202CrossRefGoogle Scholar
  95. Ellis RP, Parry H, Spicer JI, Hutchinson TH, Pipe RK, Widdicombe S (2011) Immunological function in marine invertebrates: responses to environmental perturbation. Fish Shellfish Immunol 30(6):1209–1222PubMedCrossRefGoogle Scholar
  96. Endean R (1966) The coelomocytes and coelomic fluids. In: Boolootian RA (ed) Physiology of echinodermata. Intersciences, New York, pp 301–328Google Scholar
  97. Engle J, Halvorson W, Maender G (1994) Perspectives on the structure and dynamics of nearshore marine assemblages of the California Channel Islands. In: The fourth California channel islands symposium: update on the status of resources, Santa BarbaraGoogle Scholar
  98. Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V (2012) Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76:114–121PubMedCrossRefGoogle Scholar
  99. Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13(5):610–615PubMedPubMedCentralCrossRefGoogle Scholar
  100. Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago, pp 206–226Google Scholar
  101. Finch CE, Austad SN (2001) History and prospects: symposium on organisms with slow aging. Exp Gerontol 36:593–597PubMedCrossRefGoogle Scholar
  102. Fontaine AR, Lambert P (1977) The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can J Zool 55:1530–1544PubMedCrossRefGoogle Scholar
  103. Franchi N, Ballarin L (2014) Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. Dev Comp Immunol 46:430–438PubMedCrossRefGoogle Scholar
  104. Franchi N, Ballarin L (2017) Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. Fish Shellfish Immunol 63:157–164CrossRefGoogle Scholar
  105. Franco CF, Santos R, Coelho AV (2011) Proteome characterization of sea star coelomocytes—the innate immune effector cells of echinoderms. Proteomics 11(17):3587–3592PubMedPubMedCentralCrossRefGoogle Scholar
  106. Fuess LE, Eisenlord ME, Closek CJ, Tracy AM, Mauntz R, Gignoux-Wolfsohn S, Moritsch MM, Yoshioka R, Burge CA, Harvell CD, Friedman CS, Hewson I, Hershberger PK, Roberts SB (2015) Up in arms: immune and nervous system response to sea star wasting disease. PLoS One 10:e0133053PubMedPubMedCentralCrossRefGoogle Scholar
  107. Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP (2006) An ancient evolutionary origin of the Rag1/2 gene locus. Proc Natl Acad Sci U S A 103:3728–3733PubMedPubMedCentralCrossRefGoogle Scholar
  108. Fujito NT, Sugimoto S, Nonaka M (2010) Evolution of thioester-containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone, Haliplanella lineate. Dev Comp Immunol 34:775–784PubMedCrossRefGoogle Scholar
  109. Fulton KM, Twine SM (2013) Immunoproteomics: current technology and applications. In: Fulton MK, Twine MS (eds) Immunoproteomics: methods and protocols. Humana Press, Totowa, pp 21–57CrossRefGoogle Scholar
  110. Furukawa R, Takahashi Y, Nakajima Y, Dan-Sohkawa M, Kaneko H (2009) Defense system by mesenchyme cells in bipinnaria larvae of the starfish, Asterina pectinifera. Dev Comp Immunol 33(2):205–215PubMedCrossRefGoogle Scholar
  111. Furukawa R, Funabashi H, Matsumoto M, Kaneko H (2012a) Starfish ApDOCK protein essentially functions in larval defense system operated by mesenchyme cells. Immunol Cell Biol 90:955–965PubMedCrossRefGoogle Scholar
  112. Furukawa R, Matsumoto M, Kaneko H (2012b) Characterization of a scavenger receptor cysteine-rich-domain-containing protein of the starfish, Asterina pectinifera: ApSRCR1 acts as an opsonin in the larval and adult innate immune systems. Dev Comp Immunol 36(1):51–61PubMedCrossRefGoogle Scholar
  113. Furukawa R, Tamaki K, Kaneko H (2016) Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis. Immunol Cell Biol 94:315–321PubMedCrossRefGoogle Scholar
  114. Gallo A, Tosti E (2013) Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar Drugs 11(9):3554–3568PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720PubMedCrossRefGoogle Scholar
  116. Gao Z, Li M, Ma J, Zhang S (2014) An amphioxus gC1q protein binds human IgG and initiates the classical pathway: implications for a C1q-mediated complement system in the basal chordate. Eur J Immunol 44:3680–3695PubMedCrossRefPubMedCentralGoogle Scholar
  117. Gao Z, Ma Z, Qu B, Jiao D, Zhang S (2017) Identification and characterization of properdin in amphioxus: implications for a functional alternative complement pathway in the basal chordate. Fish Shellfish Immunol 65:1–8PubMedCrossRefGoogle Scholar
  118. Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47(6):479–491PubMedCrossRefGoogle Scholar
  119. Gelebart P, Opas M, Michalak M (2005) Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37(2):260–266PubMedCrossRefGoogle Scholar
  120. Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71:101–132PubMedCrossRefGoogle Scholar
  121. Gerdol M, Venier P (2015) An updated molecular basis for mussel immunity. Fish Shellfish Immunol 46:17–38PubMedCrossRefGoogle Scholar
  122. Ghosh J, Buckley KM, Nair SV, Raftos DA, Miller C, Majeske AJ, Hibino T, Rast JP, Roth M, Smith LC (2010) Sp185/333: a novel family of genes and proteins involved in the purple sea urchin immune response. Dev Comp Immunol 34:235–245PubMedCrossRefPubMedCentralGoogle Scholar
  123. Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107(2):414–419PubMedCrossRefGoogle Scholar
  124. Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173(2):546–557PubMedPubMedCentralCrossRefGoogle Scholar
  125. Giga Y, Ikai A (1985a) Purification and physical chemical characterization of 23S glycoprotein from sea urchin (Anthocidaris crassispina) eggs. J Biochem 98(1):237–243Google Scholar
  126. Giga Y, Ikai A (1985b) Purification of the most abundant protein in the coelomic fluid of a sea urchin which immunologically cross reacts with 23S glycoprotein in the sea urchin eggs. J Biochem 98(1):19–26PubMedCrossRefGoogle Scholar
  127. Gilles K, Pearse J (1986) Disease in sea urchins Strongylocentrotus purpuratus: experimental infection and bacterial virulence. Dis Aquat Org 1:105–114CrossRefGoogle Scholar
  128. Glinel K, Thebault P, Humblot V, Pradier C-M, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8(5):1670–1684PubMedCrossRefGoogle Scholar
  129. Gowda NM, Goswani U, Khan MI (2008) T-antigen binding lectin with antibacterial activity from marine invertebrate sea cucumber (Holothuria scabra): possible involvement in differential recognition of bacteria. J Invertebr Pathol 99:141–145PubMedCrossRefGoogle Scholar
  130. Gross PS, Al-Sharif WZ, Clow LA, Smith LC (1999) Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol 23:429–442PubMedCrossRefGoogle Scholar
  131. Gross PS, Clow LA, Smith LC (2000) SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics 51:1034–1044PubMedCrossRefGoogle Scholar
  132. Gudenkauf BM, Eaglesham J, Aragundi W, Hewson I (2014) Discovery of urchin-associated densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii. J Gen Virol 95:652–658PubMedCrossRefGoogle Scholar
  133. Haag ES, Sly BJ, Andrews ME, Raff RA (1999) Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma. Dev Biol 211(1):77–87PubMedCrossRefGoogle Scholar
  134. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108PubMedCrossRefGoogle Scholar
  135. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557PubMedCrossRefGoogle Scholar
  136. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases--climate links and anthropogenic factors. Science 285(5433):1505–1510PubMedCrossRefPubMedCentralGoogle Scholar
  137. Hatakeyama T, Suenaga T, Eto S, Niidome T, Aoyagi H (2004) Antibacterial activity of peptides derived from the C-terminal region of a hemolytic lectin, CEL-III, from the marine invertebrate Cucumaria echinata. J Biochem 135(1):65–70PubMedCrossRefGoogle Scholar
  138. Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen OM, Stensvag K (2002) Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Pathol 81(2):94–102PubMedCrossRefGoogle Scholar
  139. He Y, Tankg B, Zhang S, Liu Z, Zhao B, Chen L (2008) Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri: implication for involvement of hepatic cecum in acute phase response. Fish Shellfish Immunol 24:768–778PubMedCrossRefGoogle Scholar
  140. Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the β-sheet antimicrobial protegrin. Biochemistry 39(1):139–145PubMedCrossRefGoogle Scholar
  141. Henson JH, Schatten G (1983) Calcium regulation of the actin-mediated cytoskeletal transformation of sea urchin coelomocytes. Cell Motil Cytoskeleton 3:525–534CrossRefGoogle Scholar
  142. Henson JH, Nesbitt D, Wright BD, Scholey JM (1992) Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci 103:309–320PubMedGoogle Scholar
  143. Henson JH, Svitkina TM, Burns AR, Hughes HE, MacPartland KJ, Nazarian R, Borisy GG (1999) Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol Biol Cell 10(12):4075–4090PubMedPubMedCentralCrossRefGoogle Scholar
  144. Hetzel HR (1963) Studies on holothurian coelomocytes. I. A survey of coelomocyte types. Biol Bull 125:289–301CrossRefGoogle Scholar
  145. Hewson I, Button JB, Gudenkauf BM, Miner B, Newton AL, Gaydos JK, Wynne J, Groves CL, Hendler G, Murray M, Fradkin S, Breitbart M, Fahsbender E, Lafferty KD, Kilpatrick AM, Miner CM, Raimondi P, Lahner L, Friedman CS, Daniels S, Haulena M, Marliave J, Burge CA, Eisenlord ME, Harvell CD (2014) Densovirus associated with sea-star wasting disease and mass mortality. Proc Natl Acad Sci U S A 111(48):17278–17283PubMedPubMedCentralCrossRefGoogle Scholar
  146. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365PubMedPubMedCentralCrossRefGoogle Scholar
  147. Hildemann WH, Dix TG (1972) Transplantation reactions of tropical Australian echinoderms. Transplantation 14(5):624–633PubMedCrossRefPubMedCentralGoogle Scholar
  148. Hill SK, Aragona JB, Lawrence JM (2004) Growth bands in test plates of the sea urchins Arbacia punctulata and Lytechinus variegatus (Echinodermata) on the central Florida Gulf Coast shelf. Gulf Mexico Sci 22(1):96–100CrossRefGoogle Scholar
  149. Hisamatsu K, Tsuda N, Goda S, Hatakeyama T (2008) Characterization of the α-helix region in domain 3 of the haemolytic lectin CEL-III: implications for self-oligomerization and haemolytic processes. J Biochem 143(1):79–86PubMedCrossRefGoogle Scholar
  150. Ho ECH, Buckley KM, Schrankel CS, Schuh NW, Hibino T, Solek CM, Bae K, Wang G, Rast JP (2016) Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol Cell Biol 94:861–874CrossRefGoogle Scholar
  151. Hogan MC, Griffin MD, Rossetti S, Torres VE, Ward CJ, Harris PC (2003) PKHDL1, a homolog of the autosomal recessive polycystic kidney disease gene, encodes a receptor with inducible T lymphocyte expression. Hum Mol Genet 12(6):685–698PubMedCrossRefGoogle Scholar
  152. Horswill AR, Stoodley P, Stewart PS, Parsek MR (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387(2):371–380PubMedCrossRefGoogle Scholar
  153. Howard-Ashby M, Materna SC, Brown CT, Tu Q, Oliveri P, Cameron RA, Davidson EH (2006) High regulatory gene use in sea urchin embryogenesis: implications for bilaterian development and evolution. Dev Biol 300(1):27–34PubMedPubMedCentralCrossRefGoogle Scholar
  154. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352PubMedCrossRefGoogle Scholar
  155. Huang G, Liu H, Han Y, Fan L, Zhang Q, Liu J, Yu X, Zhang L, Chen S, Dong M, Wang L, Xu A (2007) Profile of acute immune response in Chinese amphioxus upon Staphylococcus aureus and Vibrio parahaemolyticus infection. Dev Comp Immunol 31(10):1013–1023Google Scholar
  156. Huang YB, Huang JF, Chen YX (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152PubMedPubMedCentralCrossRefGoogle Scholar
  157. Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Yu Y, Li J, Yang M, Xu L, Chen S, Xu A (2011) Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 286:36739–36748PubMedPubMedCentralCrossRefGoogle Scholar
  158. Huang G, Huang S, Yan X, Yang P, Li J, Xu W, Zhang L, Wang R, Yu Y, Yuan S, Chen S, Luo G, Xu A (2014) Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proc Natl Acad Sci 111(37):13469–13474PubMedCrossRefGoogle Scholar
  159. Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A (2016) Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166:102–114PubMedPubMedCentralCrossRefGoogle Scholar
  160. Huff T, Muller CS, Otto AM, Netzker R, Hannappel E (2001) Beta-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33(3):205–220PubMedCrossRefGoogle Scholar
  161. Hughes TP, Keller BD, Jackson JBC, Boyle MJ (1985) Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull Mar Sci 36:377–384Google Scholar
  162. Hugli TE (1990) Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol 153:181–208PubMedGoogle Scholar
  163. Hyman L (1955) The invertebrates: echinodermata the coelomate bilateria, vol IV. McGraw-Hill, New YorkGoogle Scholar
  164. Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7–8):624–649CrossRefGoogle Scholar
  165. Ito T, Matsutani T, Mori K, Nomure T (1992) Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchin Strongylocentrotus nudus. Dev Comp Immunol 16:287–294PubMedCrossRefPubMedCentralGoogle Scholar
  166. Jangoux M (1987) Diseases of Echinodermata. 4. Structural abnormalities and general considerations on biotic diseases. Dis Aquat Org 3:221–229CrossRefGoogle Scholar
  167. Jangoux M (1990) Chapter 5: Diseases of echinodermata. In: Kinne O (ed) Diseases of marine animals, vol III. Wiley/Biologische Anstalt Helgoland, HamburgGoogle Scholar
  168. Jangoux M, Vanden Bossche J-P (1975) Morphology and dynamics of the coelomocytes of Asterias rubens L. (Echinodermata, Asteroidea). Forma Funct 8:191–208Google Scholar
  169. Janies DA, Voight JR, Daly M (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst Biol 60(4):420–438PubMedCrossRefGoogle Scholar
  170. Jellett FJ, Wardlaw AC, Scheibling RE (1988) Experimental infection of the echinoid Strongylocentrotus droebachiensis with Paramoeba invadens: quantitative changes in the coelomic fluid. Dis Aquat Org 4:149–157CrossRefGoogle Scholar
  171. Jiang J, Zhou Z, Dong Y, Jiang B, Chen Z, Yang A, Wang B, Guan X, Gao S, Sun H (2016) The in vitro effects of divalent metal ions on the activities of immune-related enzymes in from the sea cucumber Apostichopus japonicas. Aquac Res 47:1269–1276CrossRefGoogle Scholar
  172. Johnson P (1970) Studies on diseased urchins from Point Loma. Kelp habitat improvement project.California Institute of Technology, Pasadena, pp 82–90Google Scholar
  173. Jones GM (1985) Paramoeba invadens n. sp. (Amoebida, Paramoebidae), a pathogenic amoeba from the sea urchin, Strongylocentrotus droebachiensis, in eastern Canada. J Eukaryot Microbiol 32(4):564–569Google Scholar
  174. Jones G, Scheibling R (1985) Paramoeba sp. (Amoebida, Paramoebidae) as the possible causative agent of sea urchin mass mortality in Nova Scotia. J Parasitol 71:559–565PubMedCrossRefGoogle Scholar
  175. Jones G, Hebda A, Scheibling R, Miller R (1985) Histopathology of the disease causing mass mortality of sea urchins (Strongylocentrotus droebachiensis) in Nova Scotia. J Invertebr Pathol 45:260–271PubMedCrossRefGoogle Scholar
  176. Jurgens LJ, Rogers-Bennett L, Raimondi PT, Schiebelhut LM, Dawson MN, Grosberg RK, Gaylord B (2015) Patterns of mass mortality among rocky shore invertebrates across 100 km of northeastern Pacific coastline. PLoS One 10(6):e0126280PubMedPubMedCentralCrossRefGoogle Scholar
  177. Kanungo K (1982) In vitro studies on the effects of the cell-free coelomic fluid, calcium, ad/or magnesium on clumping of the coelomocytes of the sea star Asterias forbesi (Echinodermata: Asteroidea). Biol Bull 163:438–452CrossRefGoogle Scholar
  178. Kapitonov VV, Koonin EV (2015) Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 10:20PubMedPubMedCentralCrossRefGoogle Scholar
  179. Kaplan G, Bertheussen K (1977) The morphology of echinoid phagocytes and mouse peritoneal macrophages during phagocytosis in vitro. Scand J Immunol 6:1289–1296PubMedCrossRefGoogle Scholar
  180. Karp RD, Hildemann WH (1976) Specific allograft reactivity in the sea star Dermasterias imbricata. Transplantation 22(5):434–439PubMedCrossRefGoogle Scholar
  181. Katow H (2004) The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mech Dev 121(4):325–337PubMedCrossRefGoogle Scholar
  182. Kee BL (2009) E and ID proteins branch out. Nat Rev Immunol 9(3):175–184PubMedCrossRefGoogle Scholar
  183. Kiani N, Heidari B, Rassa M, Kadkhodazadeh M, Heidari B (2014) Antibacterial activity of the body wall extracts of sea cucumber (Invertebrata; Echinodermata) on infectious oral streptococci. J Basic Clin Physiol Pharmacol 25:367–373CrossRefGoogle Scholar
  184. Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panakova D, MacRae C, Mork LA, Crump JG, Traver D (2014) Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J 33(20):2363–2373PubMedPubMedCentralCrossRefGoogle Scholar
  185. Kimura A, Sakaguchi E, Nonaka M (2009) Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology 214:165–178PubMedCrossRefGoogle Scholar
  186. Kindred JE (1924) The cellular elements in the perivisceral fluid of echinoderms. Biol Bull 46:228–251CrossRefGoogle Scholar
  187. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447PubMedCrossRefGoogle Scholar
  188. Kober KM, Bernardi G (2013) Phylogenomics of strongylocentrotid sea urchins. BMC Evol Biol 13:88PubMedPubMedCentralCrossRefGoogle Scholar
  189. Kominami T (2000) Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 42(1):41–51PubMedCrossRefGoogle Scholar
  190. Kominami T, Takata H (2003) Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae. Dev Growth Differ 45(2):129–142PubMedCrossRefGoogle Scholar
  191. Kominami T, Takata H, Takaichi M (2001) Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis. Dev Growth Differ 43(6):699–707PubMedCrossRefGoogle Scholar
  192. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306PubMedPubMedCentralCrossRefGoogle Scholar
  193. Krupke OA, Zysk I, Mellott DO, Burke RD (2016) Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos. elife 5:e16000PubMedPubMedCentralCrossRefGoogle Scholar
  194. Kuznetsova TA, Anisimov MM, Popov AM, Baranova SI, Afiyatullov SS, Kapustina II, Antonov AS, Elyakov GB (1982) A comparative study in vitro of physiological activity of triterpene glycosides of marine invertebrates of echinoderm type. Comp Biochem Physiol C 73(1):41–43PubMedCrossRefGoogle Scholar
  195. Laegdsgaard P, Byrne M, Anderson DT (1991) Reproduction of sympatric populations of Heliocidaris erythrogramma and H. tuberculata (Echinoidea) in New South Wales. Mar Biol 110(3):359–374CrossRefGoogle Scholar
  196. Lapraz F, Haillot E, Lepage T (2015) A deuterostome origin of the Spemann organizer suggested by Nodal and ADMPs functions in echinoderms. Nat Commun 6:8927PubMedCrossRefGoogle Scholar
  197. Lawrence J (1996) Mass mortalities of echinoderms from abiotic factors. Echinoderm Stud. M. Jangoux and G. J Lawrence. Rotterdam: Balkema 5:103–137Google Scholar
  198. Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD (2016) Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 6:26828PubMedPubMedCentralCrossRefGoogle Scholar
  199. Leclerc M, Kresdorn N, Rotter B (2013) Evidence of complement genes in the sea-star Asterias rubens. Comparisons with the sea urchin. Immunol Lett 151:68–70PubMedCrossRefGoogle Scholar
  200. Lee PY, Davidson EH (2004) Expression of SpGatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors. Gene Expr Patterns 5(2):161–165PubMedCrossRefGoogle Scholar
  201. Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43(12):3590–3599PubMedCrossRefGoogle Scholar
  202. Lee JY, Yang ST, Lee SK, Jung HH, Shin SY, Hahm KS, Kim JI (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J 275(15):3911–3920PubMedCrossRefGoogle Scholar
  203. Leippe M (1999) Antimicrobial and cytolytic polypeptides of amoeboid protozoa—effector molecules of primitive phagocytes. Dev Comp Immunol 23(4–5):267–279PubMedCrossRefGoogle Scholar
  204. Lessios HA (1988) Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annu Rev Ecol Syst 19:371–393CrossRefGoogle Scholar
  205. Lessios HA, Robertson D, Cubit J (1984) Spread of Diadema mass mortality through the Caribbean. Science 226(4672):335–337PubMedCrossRefGoogle Scholar
  206. Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, Hampton TG, Sellke F, Carmeliet P, Simons M (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6(1):49–55PubMedCrossRefGoogle Scholar
  207. Li C, Haug T, Styrvold OB, Jorgensen TO, Stensvag K (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 32(12):1430–1440PubMedCrossRefGoogle Scholar
  208. Li C, Blencke HM, Smith LC, Karp MT, Stensvag K (2010a) Two recombinant peptides, SpStrongylocins 1 and 2, from Strongylocentrotus purpuratus, show antimicrobial activity against Gram-positive and Gram-negative bacteria. Dev Comp Immunol 34(3):286–292PubMedCrossRefGoogle Scholar
  209. Li C, Haug T, Moe MK, Styrvold OB, Stensvag K (2010b) Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 34(9):959–968PubMedCrossRefGoogle Scholar
  210. Li C, Blencke HM, Haug T, Jorgensen O, Stensvag K (2014a) Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis). Dev Comp Immunol 43(1):106–113Google Scholar
  211. Li Z, Maa Z, van der Kuijpa TJ, Yuana Z, Huanga L (2014b) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853PubMedCrossRefGoogle Scholar
  212. Li C, Blencke HM, Haug T, Stensvag K (2015) Antimicrobial peptides in echinoderm host defense. Dev Comp Immunol 49(1):190–197PubMedCrossRefGoogle Scholar
  213. Liddell WD, Ohlhorst SL (1986) Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J Exp Mar Biol Ecol 95:1–8CrossRefGoogle Scholar
  214. Liu H, Zheng F, Sun X, Hong X, Dong S, Wang B, Tang X, Wang Y (2010a) Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). J Invertebr Pathol 105:236–242PubMedCrossRefGoogle Scholar
  215. Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW (2010b) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16(3):199–213PubMedPubMedCentralCrossRefGoogle Scholar
  216. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120(4):497–512PubMedCrossRefGoogle Scholar
  217. Long KA, Nossa CW, Sewell MA, Putnam NH, Ryan JF (2016) Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis. GigaScience 5(1):1–4CrossRefGoogle Scholar
  218. Loram J, Raudonis R, Chapman J, Lortie M, Bodnar A (2012) Sea urchin coelomocytes are resistant to a variety of DNA damaging agents. Aquat Toxicol 124–125:133–138PubMedCrossRefGoogle Scholar
  219. Lun CM, Schrankel CS, Chou H-Y, Sacchi S, Smith LC (2016) A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs. Immunobiology 221(8):889–903PubMedCrossRefGoogle Scholar
  220. Lun CM, Bishop BM, Smith LC (2017a) Multitasking immune Sp185/333 protein, rSpTransformer-E1, and its recombinant fragments undergo secondary structural transformation upon binding targets. J Immunol 198(7):2957–2966PubMedCrossRefGoogle Scholar
  221. Lun CM, Samuel R, Gillmor SD, Boyd A, Smith LC (2017b) SpTransformer, a recombinant Sp185/333 protein, binds to phosphatidic acid and deforms membranes. Front Immunol 8:481PubMedPubMedCentralCrossRefGoogle Scholar
  222. Luna-Acosta L, Bustamante P, Godefroy J, Fruitier-Arnaudin I, Thomas-Guyon H (2010) Seasonal variation of pollution biomarkers to assess the impact on the health status of juvenile Pacific oysters Crassostrea gigas exposed in situ. Environ Sci Pollut Res 17:999–1008Google Scholar
  223. Lyons BP, Thain JE, Stentiford GD, Hylland K, Davies IM, Vethaak AD (2010) Using biological effects tools to define good environmental status under the European Union Marine Strategy Framework Directive. Mar Pollut Bull 60:1647–1651PubMedCrossRefGoogle Scholar
  224. Maes P, Jangoux M (1984) The bald-sea-urchin disease: a biopathological approach. Helgolander Meeresun 37:217–224CrossRefGoogle Scholar
  225. Majeske AJ, Oleksyk T, Smith LC (2013a) The Sp185/333 immune response genes and proteins are expressed in cells dispersed within all major organs of the adult purple sea urchin. Innate Immun 19(6):569–587PubMedCrossRefGoogle Scholar
  226. Majeske AJ, Bayne CJ, Smith LC (2013b) Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide. PLoS One 8(4):e61419PubMedPubMedCentralCrossRefGoogle Scholar
  227. Majeske AJ, Oren M, Sacchi S, Smith LC (2014) Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge. J Immunol 193:5678–5688PubMedCrossRefGoogle Scholar
  228. Maltseva AL, Aleshina GM, Kokryakov VN, Krasnodembskii EG (2007) Diversity of antimicrobial peptides in acidic extracts from coelomocytes of starfish Asterias rubens L. Vestn S-Peterb Univ 3:85–94Google Scholar
  229. Marino R, Kimura Y, De Santis R, Lambris JD, Pinto MR (2002) Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics 53(12):1055–1064PubMedCrossRefGoogle Scholar
  230. Maroti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374PubMedCrossRefGoogle Scholar
  231. Martin I, Grotewiel MS (2006) Oxidative damage and age-related functional declines. Mech Ageing Dev 127:411–423PubMedCrossRefGoogle Scholar
  232. Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364(1):77–87PubMedPubMedCentralCrossRefGoogle Scholar
  233. Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10(4–5):177–184PubMedPubMedCentralCrossRefGoogle Scholar
  234. Materna SC, Ransick A, Li E, Davidson EH (2013) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375:92–104PubMedPubMedCentralCrossRefGoogle Scholar
  235. Matranga V, Toia G, Bonaventura R, Müller WEG (2000) Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 5(2):113–120PubMedPubMedCentralCrossRefGoogle Scholar
  236. Matranga V, Bonaventura R, Di Bella G (2002) Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell Mol Biol 48(4):345–349PubMedGoogle Scholar
  237. Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schröder HC, Müller WEG (2005) Monitoring chemical and physical stress using sea urchin immune cells. Progress in molecular and subcellular biology. Subseries marine molecular biotechnology. In: Matranga V (ed) Echinodermata. Springer, Berlin/HeidelbergGoogle Scholar
  238. Matranga V, Pinsino A, Celi M, Di Bella G, Natoli A (2006) Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar Biol 149:25–34CrossRefGoogle Scholar
  239. Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35(35):11361–11368PubMedCrossRefGoogle Scholar
  240. McCauley BS, Weideman EP, Hinman VF (2010) A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 340(2):200–208PubMedCrossRefGoogle Scholar
  241. Melo MN, Ferre R, Castanho MARB (2009) Opinion: antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250PubMedCrossRefPubMedCentralGoogle Scholar
  242. Messier-Solek C, Buckley KM, Rast JP (2010) Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 22(1):39–47PubMedCrossRefGoogle Scholar
  243. Metchnikoff E (1893) Lectures on the comparative pathology of inflammation, delivered at the Pasteur Institute in 1891. Kegan Paul, Trench, Rtubner & Co., Ltd., London, pp xii–218Google Scholar
  244. Miller RJ, Colodey AG (1983) Widespread mass mortalities of the green sea urchin in Nova Scotia, Canada. Mar Biol 73:263–267CrossRefGoogle Scholar
  245. Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TC (2007) The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biol 8(4):1–13Google Scholar
  246. Miller CA, Buckley KM, Easley RL, Smith LC (2010) An Sp185/333 gene cluster from the purple sea urchin and putative microsatellite-mediated gene diversification. BMC Genomics 11(1):575PubMedPubMedCentralCrossRefGoogle Scholar
  247. Mogilenko DA, Kudriavtsev IV, Orlov SV, Kharazova AD, Polevshchikov AV (2010) Expression of the starfish complement component C3 gene homologue under the influence of bacterial lipopolysaccharide. Mol Biol (Mosk) 44:74–84CrossRefGoogle Scholar
  248. Mohammadizadeh F, Ehsanpor M, Afkhami M, Mokhlesi A, Khazaali A, Montazeri S (2013) Evaluation of antibacterial, antifungal and cytotoxic effects of Holothuria scabra from the north coast of the Persian Gulf. J Mycol Med 23(4):225–229PubMedCrossRefGoogle Scholar
  249. Moore HB, Jutare T, Bauer JC, Jones JA (1963) The biology of Lytechinus variegatus. Bull Mar Sci Gulf Caribb 13:23–53Google Scholar
  250. Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508PubMedCrossRefGoogle Scholar
  251. Moses C, Bonem R (2001) Recent population dynamics of Diadema antillarum and Tripneustes ventricosus along the north coast of Jamaica, WI. Bull Mar Sci 68:327–336Google Scholar
  252. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159PubMedPubMedCentralCrossRefGoogle Scholar
  253. Multerer KA, Smith LC (2004) Two cDNAs from the purple sea urchin, Strongylocentrotus purpuratus, encoding mosaic proteins with domains found in factor H, factor I, and complement components C6 and C7. Immunogenetics 56:89–106PubMedCrossRefGoogle Scholar
  254. Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC (2005) Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 22(1):33–47PubMedCrossRefGoogle Scholar
  255. Narula J, Smith AM, Gottgens B, Igoshin OA (2010) Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate. PLoS Comput Biol 6(5):e1000771PubMedPubMedCentralCrossRefGoogle Scholar
  256. Narula J, Williams CJ, Tiwari A, Marks-Bluth J, Pimanda JE, Igoshin OA (2013) Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Dev Biol 379(2):258–269PubMedCrossRefGoogle Scholar
  257. Noll H, Matranga V, Cervello M, Humphreys T, Kuwasaki B, Adelson D (1985) Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information. Proc Natl Acad Sci U S A 82(23):8062–8066PubMedPubMedCentralCrossRefGoogle Scholar
  258. Noll H, Alcedo J, Daube M, Frei E, Schiltz E, Hunt J, Humphries T, Matranga V, Hochstrasser M, Aebersold R, Lee H, Noll M (2007) The toposome, essential for sea urchin cell adhesion and development, is a modified iron-less calcium-binding transferrin. Dev Biol 310(1):54–70PubMedCrossRefGoogle Scholar
  259. Nonaka M, Azumi K (1999) Opsonic complement system of the solitary ascidian, Halocynthia roretzi. Dev Comp Immunol 23:421–427PubMedCrossRefGoogle Scholar
  260. Norris RD, Turner SK, Hull PM, Ridgwell A (2013) Marine ecosystem responses to Cenozoic global change. Science 341(6145):492–498PubMedCrossRefGoogle Scholar
  261. Nydam ML, De Tomaso AW (2011) Creation and maintenance of variation in allorecognition loci: molecular analysis in various model systems. Front Immunol 2:79PubMedPubMedCentralGoogle Scholar
  262. O’Laughlin PM, Waters JM (2004) A molecular and morphological revision of genera of Asterinidae (Echinodermata: Asteroidea). Mem Mus Victoria 61(1):1–40CrossRefGoogle Scholar
  263. Ogden JC, Abbott DP, Abbott, IA (eds) (1973) Studies on the activity pattern and food of the echinoid Diadema antillarum Philippi on a West Indian patch reef. Special publication no. 2, West Indies Laboratory of Fairleigh Dickinson Univ., St. Croix, Virgin Islands, p 96Google Scholar
  264. Ohguro Y, Takata H, Kominami T (2011) Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 53(1):110–123PubMedCrossRefGoogle Scholar
  265. Oren T, Torregroza I, Evans T (2005) An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. Nucleic Acids Res 33(13):4357–4367PubMedPubMedCentralCrossRefGoogle Scholar
  266. Oren M, Barela Hudgell MA, D’Allura B, Agronin J, Gross A, Podini D, Smith LC (2016a) Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family. BMC Genomics 17:900PubMedPubMedCentralCrossRefGoogle Scholar
  267. Oren M, Barela Hudgell MA, Golconda P, Lun CM, Smith LC (2016b) Genomic instability and shared mechanisms for gene diversification in two distant immune gene families: the echinoid 185/333 and the plant NBS-LRR. In: Malagoli D (ed) The evolution of the immune system, conservation and diversification. Elsevier Inc/Academic Press, London, pp 295–310Google Scholar
  268. Oweson C, Sköld H, Pinsino A, Matranga V, Hernroth B (2008) Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquat Toxicol 89:75–81PubMedCrossRefGoogle Scholar
  269. Oweson C, Li C, Söderhäll I, Hernroth B (2010) Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm Asterias rubens (L.). Aquat Toxicol 100:84–90PubMedCrossRefPubMedCentralGoogle Scholar
  270. Pag U, Sahl HG (2002) Lanthionine-containing bacterial peptides. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG (eds) Peptide antibiotics: discovery, mode of actions, and applications. Dekker M, New York, pp 47–80Google Scholar
  271. Pagliara P, Stabili L (2012) Zinc effect on the sea urchin Paracentrotus lividus immunological competence. Chemosphere 89(5):563–568PubMedCrossRefGoogle Scholar
  272. Palumbi SR, Lessios HA (2005) Evolutionary animation: how do molecular phylogenies compare to Mayr’s reconstruction of speciation patterns in the sea? Proc Natl Acad Sci U S A 102:6566–6572PubMedPubMedCentralCrossRefGoogle Scholar
  273. Pancer Z (2000) Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci U S A 97:13156–13161PubMedPubMedCentralCrossRefGoogle Scholar
  274. Pancer Z (2001) Individual-specific repertoires of immune cells SRCR receptors in the purple sea urchin (S. purpuratus). Adv Exp Med Biol 484:31–40PubMedCrossRefGoogle Scholar
  275. Pancer Z, Rast JP, Davidson EH (1999) Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics 49(9):773–786PubMedCrossRefGoogle Scholar
  276. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257PubMedCrossRefGoogle Scholar
  277. Pearse J, Costa D, Yellin M, Agegian C (1977) Localized mass mortality of red sea urchin, Strongylocentrotus franciscanus, near Santa Cruz, California. Fish Bull US 75:645–648Google Scholar
  278. Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6(10):729–742PubMedCrossRefGoogle Scholar
  279. Pena MH, Oxenford HA, Parker C, Johnson A (2010) Biology and fishery management of the white sea urchin, Tripneustes ventricosus, in the eastern Caribbean. FAO Fisheries and Aquaculture Circular No. 1056. FAO, RomeGoogle Scholar
  280. Peng M, Niu D, Chen Z, Lan T, Dong Z, Tran TN, Li J (2017) Expression of a novel complement C3 gene in the razor clam Sinonovacula constricta and its role in innate immune response and hemolysis. Dev Comp Immunol 73:184–192PubMedCrossRefGoogle Scholar
  281. Perez-Portela R, Turon X, Riesgo A (2016) Characterization of the transcriptome and gene expression of four different tissues in the ecologically relevant sea urchin Arbacia lixula using RNA-seq. Mol Ecol Resour 16(3):794–808PubMedCrossRefGoogle Scholar
  282. Perry G, Epel D (1981) Ca2+-stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs. Exp Cell Res 134(1):65–72PubMedPubMedCentralCrossRefGoogle Scholar
  283. Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WYI, Wilson NK, Landry JR, Wood AD, Kolb-Kokocinski A, Green AR, Tannahill D, Lacaud G, Kouskoff V, Göttgens B (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A 104(45):17692–17697PubMedPubMedCentralCrossRefGoogle Scholar
  284. Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49(7):2665–2672PubMedPubMedCentralCrossRefGoogle Scholar
  285. Pinsino A, Matranga V (2015) Sea urchin immune cells as sentinels of environmental stress. Dev Comp Immunol 49:198–205PubMedCrossRefGoogle Scholar
  286. Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones Winter 12(4):331–341CrossRefGoogle Scholar
  287. Pinsino A, Della Torre C, Sammarini V, Bonaventura R, Amato E, Matranga V (2008) Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol 24(6):541–552PubMedCrossRefPubMedCentralGoogle Scholar
  288. Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V (2015) Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signaling pathway. Sci Rep 5:14492PubMedPubMedCentralCrossRefGoogle Scholar
  289. Pisani D, Feuda R, Peterson JK, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62(1):27–34PubMedPubMedCentralCrossRefGoogle Scholar
  290. Plytycz B, Seljelid R (1993) Bacterial clearance by the sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 17(3):283–289PubMedCrossRefGoogle Scholar
  291. Prado-Alvarez M, Rotllant J, Gestal C, Novoa B, Figueras A (2009) Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol 26:305–315PubMedCrossRefGoogle Scholar
  292. Ramírez-Gómez F, García-Arrarás JE (2010) Echinoderm immunity. Invertebr Surviv J 7:211–220Google Scholar
  293. Ramírez-Gómez F, Ortiz-Pineda PA, Rojas-Cartagena C, Suarez-Castillo EC, Garcia-Ararras JE (2008) Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 60:57–71PubMedCrossRefGoogle Scholar
  294. Ransick A, Davidson EH (2006) Cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297(2):587–602PubMedPubMedCentralCrossRefGoogle Scholar
  295. Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Dev Biol 364(2):259–267PubMedPubMedCentralCrossRefGoogle Scholar
  296. Rast JP, Messier-Solek C (2008) Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 214(3):274–283PubMedCrossRefGoogle Scholar
  297. Rast JP, Oliveri P, Davidson EH (2000) Conserved linkage among sea urchin homologs of genes encoded in the vertebrate MHC region. In: Kasahara M (ed) The major histocompatibility complex: evolution, structure and function. Springer, Tokyo, pp 66–74CrossRefGoogle Scholar
  298. Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314:952–956PubMedPubMedCentralCrossRefGoogle Scholar
  299. Ray S, Mukherjee S, Bhunia NS, Bhunia AS, Ray M (2015) Immunotoxicological threats of pollutants in aquatic invertebrates. In: Larramendy ML (ed) Emerging pollutants in the environment—current and further implications. InTech, Croatia, pp 147–165Google Scholar
  300. Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547PubMedCrossRefGoogle Scholar
  301. Reich A, Dunn C, Akasaka K, Wessel G (2015) Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 10(3):e0119627PubMedPubMedCentralCrossRefGoogle Scholar
  302. Reinardy HC, Bodnar AG (2015) Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes. Mutagenesis 30:829–839PubMedGoogle Scholar
  303. Reinardy HC, Chapman J, Bodnar AG (2016) Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins. Biol Lett 12:20151057Google Scholar
  304. Reinisch CL, Bang FB (1971) Cell recognition: reactions of the sea star (Asterias vulgaras) to the injection of amebocytes of sea urchin (Arbacia punctulata). Cell Immunol 2(5):496–503Google Scholar
  305. Ridzwan BH, Kaswandi MA, Azman Y, Fuad M (1995) Screening for antibacterial agents in three species of sea cucumbers from coastal areas of Sabah. Gen Pharmacol 26(7):1539–1543PubMedCrossRefGoogle Scholar
  306. Riemann D, Kehlen A, Langner J (1999) CD13—not just a marker in leukemia typing. Immunol Today 20(2):83–88PubMedCrossRefGoogle Scholar
  307. Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI (2006) Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300(1):35–48PubMedCrossRefGoogle Scholar
  308. Robert J (2010) Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol 34:915–925PubMedPubMedCentralCrossRefGoogle Scholar
  309. Robertson DR (1991) Increase in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panama indicate food limitation. Mar Biol 111(3):437–444CrossRefGoogle Scholar
  310. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10(9):1765–1774PubMedPubMedCentralCrossRefGoogle Scholar
  311. Rosenfeld Y, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides—peptide properties and plausible modes of action. J Biol Chem 281(3):1636–1643PubMedCrossRefGoogle Scholar
  312. Rosengarten RD, Nicotra ML (2011) Model systems of invertebrate allorecognition. Curr Biol 21(2):R82–R92PubMedCrossRefGoogle Scholar
  313. Roth RO, Wildins AG, Cooke GM, Raftos DA, Nair SV (2014) Characterization of the highly variable immune response gene family, He185/333, in the sea urchin, Heliocidaris erythrogramma. PLoS One 9(10):e62079PubMedPubMedCentralCrossRefGoogle Scholar
  314. Ruffins SW, Ettensohn CA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122(1):253–263PubMedGoogle Scholar
  315. Russell MP, Ebert TA, Garcia V, Bodnar A (2012) Field and laboratory growth estimates of the sea urchin Lytechinus variegatus in Bermuda. In: Johnson C (ed) Echinoderms in a changing world. CRC Press, Boca Raton, FL, pp 133–139CrossRefGoogle Scholar
  316. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG (2007) Dynamic evolution of the innate immune system in Drosophila. Nat Genet 39(12):1461–1468PubMedCrossRefGoogle Scholar
  317. Sammarco PW (1980) Diadema and its relationship to coral spat mortality: grazing, competition, and biological disturbance. J Exp Mar Biol Ecol 45:245–272CrossRefGoogle Scholar
  318. Sarrias MR, Gronlund J, Padilla O, Madsen J, Holmskov U, Lozano F (2004) The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 24:1–37PubMedCrossRefGoogle Scholar
  319. Schatz DG (2004) Antigen receptor genes and the evolution of a recombinase. Semin Immunol 16:245–256PubMedCrossRefGoogle Scholar
  320. Scheibling R, Hennigar A (1997) Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: evidence for a link with large-scale meteorologic and oceanographic events. Mar Ecol Prog Ser 152:155–165CrossRefGoogle Scholar
  321. Scheibling R, Feehan C, Lauzon-Guay J (2010) Disease outbreaks associated with recent hurricanes cause mass mortality of sea urchins in Nova Scotia. Mar Ecol Prog Ser 408:109–116CrossRefGoogle Scholar
  322. Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, Muccilli V, Cunsolo V, Haagensen JJA, Molin S (2010) Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J Appl Microbiol 108(1):17–24PubMedCrossRefGoogle Scholar
  323. Schillaci D, Cusimano MG, Cunsolo V, Saletti R, Russo D, Vazzana M, Vitale M, Arizza V (2013) Immune mediators of sea-cucumbers Holothuria tubulosa (Echinodermata) as a source of novel antimicrobial and anti-staphylococcal biofilm agents. AMB Express 3(1):35PubMedPubMedCentralCrossRefGoogle Scholar
  324. Schillaci D, Cusimano MG, Spinello A, Barone G, Russo D, Vitale M, Parrinello D, Arizza V (2014) Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB Express 4:78PubMedPubMedCentralCrossRefGoogle Scholar
  325. Schillaci D, Spinello A, Cusimano MG, Cascioferro S, Barone G, Vitale M, Arizza V (2016) A peptide from human beta thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa. World J Microbiol Biotechnol 32(8):124PubMedCrossRefGoogle Scholar
  326. Schrankel CS, Solek CM, Buckley KM, Anderson MK, Rast JP (2016) A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev Biol 416(1):149–161PubMedPubMedCentralCrossRefGoogle Scholar
  327. Schultz J (2016) Mass mortality events of echinoderms: global patterns and local consequences. MS Thesis, Simon Fraser UniversityGoogle Scholar
  328. Schultz J, Clouthier RN, Côté IM (2016) Evidence for trophic cascade on rocky reefs following sea star mass mortality in British Columbia. PeerJ 4:e1980PubMedPubMedCentralCrossRefGoogle Scholar
  329. Schurr MJ, Martin DW, Mudd MH, Deretic V (1994) Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 176(11):3375–3382PubMedPubMedCentralCrossRefGoogle Scholar
  330. Scott MG, Gold MR, Hancock REW (1999) Interaction of cationic peptides with lipoteichoic acid and Gram-positive bacteria. Infect Immun 67(12):6445–6453PubMedPubMedCentralGoogle Scholar
  331. Sekiguchi R, Fujito NT, Nonaka M (2012) Evolution of the thioester-containing proteins (TEPs) of the arthropoda, revealed by molecular cloning of TEP genes from a spider, Hasarius adansoni. Dev Comp Immunol 36:483–489PubMedCrossRefGoogle Scholar
  332. Service M, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol B Comp Biochem 79(2):161–165CrossRefGoogle Scholar
  333. Shah M, Brown KM, Smith LC (2003) The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol 27:529–538PubMedPubMedCentralCrossRefGoogle Scholar
  334. Sherman LS, Schrankel CS, Brown KJ, Smith LC (2015) Extraordinary diversity of immune response proteins among sea urchins: nickel-isolated Sp185/333 proteins show broad variations in size and charge. PLoS One 10(9):e0138892PubMedPubMedCentralCrossRefGoogle Scholar
  335. Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126(8):1703–1713PubMedPubMedCentralGoogle Scholar
  336. Shi JS, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47(phox). Proc Natl Acad Sci USA 93(12):6014–6018PubMedCrossRefGoogle Scholar
  337. Shimizu M (1994) Histopathological investigation of the spotted gonad disease in the sea urchin, Strongylocentrotus intermedius. J Invertebr Pathol 63:182–187CrossRefGoogle Scholar
  338. Shin YP, Park HJ, Shin SH, Lee YS, Park S, Jo S, Lee YH, Lee IH (2010) Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrob Agents Chemother 54(7):2855–2866PubMedPubMedCentralCrossRefGoogle Scholar
  339. Shipp LE, Hill RZ, Moy GW, Gökırmak T, Hamdoun A (2015) ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development 142(20):3537–3548PubMedPubMedCentralCrossRefGoogle Scholar
  340. Shoguchi E, Tokuoka M, Kominami T (2002) In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos. Dev Genes Evol 212(9):407–418Google Scholar
  341. Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357PubMedCrossRefGoogle Scholar
  342. Silva JR (2000) The onset of phagocytosis and identity in the embryo of Lytechinus variegatus. Dev Comp Immunol 24(8):733–739PubMedPubMedCentralCrossRefGoogle Scholar
  343. Sim RB, Sim E (1981) Autolytic fragmentation of complement components C3 and C4 under denaturing conditions, a property shared with alpha 2-macroglobulin. Biochem J 193(1):129–141PubMedPubMedCentralCrossRefGoogle Scholar
  344. Skerjanc IS, Truong J, Filion P, McBurney MW (1996) A splice variant of the ITF-2 transcript encodes a transcription factor that inhibits MyoD activity. J Biol Chem 271(7):3555–3561PubMedCrossRefGoogle Scholar
  345. Skjoedt MO, Palarasah Y, Rasmussen K, Vitved L, Salomonsen J, Kliem A, Hansen S, Koch C, Skjodt K (2010) Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis. Dev Comp Immunol 34:59–68PubMedCrossRefGoogle Scholar
  346. Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells. Academic Press, New York, pp 513–562Google Scholar
  347. Smith LC (2002) Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev Comp Immunol 26:603–614PubMedCrossRefGoogle Scholar
  348. Smith LC (2012) Innate immune complexity in the purple sea urchin: diversity of the Sp185/33 system. Front Immunol 3:70PubMedPubMedCentralGoogle Scholar
  349. Smith LC, Coscia MR (2016) Tuning the host–pathogen relationship through evolution with a special focus on the echinoid Sp185/333 system. Invertebr Surviv J 13:355–373Google Scholar
  350. Smith LC, Davidson EH (1992) The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol Today 13(9):356–362PubMedCrossRefGoogle Scholar
  351. Smith LC, Davidson EH (1994) The echinoid immune system. Characters shared with vertebrate immune systems and characters arising in deuterostome phylogeny. Ann N Y Acad Sci 712:213–236PubMedCrossRefGoogle Scholar
  352. Smith LC, Lun CM (2016) Research highlight: multitasking rSp0032 has anti-pathogen binding activities predicting flexible and effective immune responses in sea urchins mediated by the Sp185/333 system. Pathog Infect Dis 2:e1394Google Scholar
  353. Smith LC, Lun CM (2017) The SpTransformer gene family (formerly Sp185/333) in the purple sea urchin and the functional diversity of the antipathogen rSpTransformer-E1 protein. Front Immunol 8:725PubMedPubMedCentralCrossRefGoogle Scholar
  354. Smith LC, Britten RJ, Davidson EH (1992) SpCoel1, a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 3:403–414PubMedPubMedCentralCrossRefGoogle Scholar
  355. Smith LC, Chang L, Britten RJ, Davidson EH (1996) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags—complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 156:593–602PubMedGoogle Scholar
  356. Smith LC, Shih CS, Dachenhausen SG (1998) Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol 161:6784–6793PubMedGoogle Scholar
  357. Smith LC, Azumi K, Nonaka M (1999) Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 42(1–3):107–120PubMedCrossRefGoogle Scholar
  358. Smith LC, Clow LA, Terwilliger DP (2001) The ancestral complement system in sea urchins. Immunol Rev 180:16–34PubMedCrossRefGoogle Scholar
  359. Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C, Lun CM, Majeske AJ, Matranga V, Nair SV, Rast JP, Raftos DA, Roth M, Sacchi S, Schrankel, CS, Stensvåg K (2010) Echinoderm immunity. In: Soderhall K (ed) Invertebrate immunity. Madame Curie Bioscience Database, Landes Biosciences, Austin TX. Adv Exp Med Biol 708:260–301Google Scholar
  360. Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière A-M, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron K-F, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su Y-H, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu S-Y, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu L-L, Thorn R, Wright R (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952CrossRefGoogle Scholar
  361. Solek CM, Oliveri P, Loza-Coll M, Schrankel CS, Ho ECH, Wang G, Rast JP (2013) An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 382(1):280–292PubMedPubMedCentralCrossRefGoogle Scholar
  362. Solstad RG, Li C, Isaksson J, Johansen J, Svenson J, Stensvag K, Haug T (2016) Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the edible sea urchin Echinus esculentus have 6-Br-Trp post-translational modifications. PLoS One 11(3):e0151820PubMedPubMedCentralCrossRefGoogle Scholar
  363. Spizek J, Novotna J, Rezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37(12):1241–1248PubMedCrossRefGoogle Scholar
  364. Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9(2):133–137PubMedCrossRefGoogle Scholar
  365. Stabili L, Pagliara P (2009) Effect of zinc on lysozyme-like activity of the seastar Marthasterias glacialis (Echinodermata, Asteroidea) mucus. J Invertebr Pathol 100:189–192PubMedCrossRefGoogle Scholar
  366. Stabili L, Pagliara P (2015) The sea urchin Paracentrotus lividus immunological response to chemical pollution: the case of the pesticide lindane. Chemosphere 134:60–66PubMedCrossRefGoogle Scholar
  367. Stein A, Halvorsen O (1998) Experimental transmission of the Nematode Echinomermella matsi to the sea urchin Strongylocentrotus drobachiensis in the laboratory. J Parasitol 84:658–666Google Scholar
  368. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) IPCC, 2013: summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  369. Stokstad E (2014) Death of the stars. Science 344:464–467PubMedCrossRefGoogle Scholar
  370. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160(1):91–96PubMedCrossRefGoogle Scholar
  371. Suzuki MM, Satoh N, Nonaka M (2002) C6-like and C3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system in invertebrates. J Mol Evol 54:671–679PubMedCrossRefGoogle Scholar
  372. Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129(8):1945–1955PubMedPubMedCentralGoogle Scholar
  373. Szabo DT, Loccisano AE (2012) POPs and human health risk assessment. In: Schecter A (ed) Dioxins and health including other persistent organic pollutants and endocrine disruptors, 3rd edn. Wiley, HobokenGoogle Scholar
  374. Taguchi M, Tsutsui S, Nakamura O (2016) Differential count and time-course analysis of the cellular composition of coelomocyte aggregate of the Japanese sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 58:203–209PubMedCrossRefGoogle Scholar
  375. Taketa DA, DeTomaso AW (2015) Botryllus schlosseri allorecognition: tackling the enigma. DCI 48(1):254–265Google Scholar
  376. Tamboline CR, Burke RD (1992) Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells. J Exp Zool 262(1):51–60PubMedPubMedCentralCrossRefGoogle Scholar
  377. Terwilliger DP, Clow LA, Gross PS, Smith LC (2004) Constitutive expression and alternative splicing of the exons encoding SCRs in Sp152, the sea urchin homologue of complement factor B. Implications on the evolution of the Bf/C2 gene family. Immunogenetics 56:531–543PubMedCrossRefGoogle Scholar
  378. Terwilliger DP, Buckley KM, Mehta D, Moorjani PG, Smith LC (2006) Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiol Genomics 26:134–144PubMedCrossRefGoogle Scholar
  379. Terwilliger DP, Buckley KM, Brockton V, Ritter NJ, Smith LC (2007) Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, beta-1,3-glucan, and dsRNA. BMC Mol Biol 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  380. Thys RG, Lehman CE, Pierce LC, Wang Y-H (2014) The role of DNA secondary structures at human chromosomal fragile sites. Mol Biol 3(116):2Google Scholar
  381. Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48(10):3645–3654PubMedPubMedCentralCrossRefGoogle Scholar
  382. Tokuoka M, Setoguchi C, Kominami T (2002) Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus. Dev Growth Differ 44(3):239–250PubMedCrossRefGoogle Scholar
  383. Tomlinson S (1993) Complement defense mechanisms. Curr Opin Immunol 5(1):83–89PubMedCrossRefGoogle Scholar
  384. Turton G, Wardlaw A (1987) Pathogenicity of the marine yeasts Metschnikowia zobelli and Rhodotorula rubra for the sea urchin Echinus esculentus. Aquaculture 67:199–202Google Scholar
  385. Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A 108(20):8367–8372PubMedPubMedCentralCrossRefGoogle Scholar
  386. Unuma T, Ikeda K, Yamano K, Moriyama A, Ohta H (2007) Zinc-binding property of the major yolk protein in the sea urchin—implications of its role as a zinc transporter for gametogenesis. FEBS J 274(19):4985–4998PubMedCrossRefPubMedCentralGoogle Scholar
  387. Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D2 concept. Expert Rev Proteomics 7:543–564PubMedPubMedCentralCrossRefGoogle Scholar
  388. Vasilenko AA, Kovalchuk SN, Bulgakov AA, Petrova IY, Rasskazov VA (2012) Obtaining and refolding of a recombinant mannan-binding lectin from the holothurian Apostichopus japonicus. Biologiya Morya-Mar Biol 38:72–78Google Scholar
  389. Veldhuizen EJ, Schneider VA, Agustiandari H, van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ, Haagsman HP (2014) Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One 9(4):e95939PubMedPubMedCentralCrossRefGoogle Scholar
  390. Vethamany VG, Fung M (1972) The fine structure of coelomocytes of the sea urchin, Strongylocentrotus droebachiensis (Muller, O. F.). Can J Zool 50:77–81CrossRefGoogle Scholar
  391. Vieira-Pires RS, Morais-Cabral JH (2010) 3(10) helices in channels and other membrane proteins. J Gen Physiol 136:585–592PubMedPubMedCentralCrossRefGoogle Scholar
  392. Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18(2):152–162CrossRefGoogle Scholar
  393. Volanakis JE (1998) Overview of the complement system. In: Volanakis JE, Frank MM (eds) The human complement system in health and disease. Marcel Dekker, New York, pp 9–32CrossRefGoogle Scholar
  394. von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201CrossRefGoogle Scholar
  395. Walmsley M, Ciau-Uitz A, Patient R (2002) Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 129(24):5683–5695PubMedCrossRefGoogle Scholar
  396. Wang Y, Xu G, Zhang C, Sun S (2005) Main diseases of cultured Apostichopus japonicus: prevention and treatment. Mar Sci 29:1–7Google Scholar
  397. Wang D, Claus CL, Vaccarelli G, Braunstein M, Schmitt TM, Zuñiga-Pflücker J-C, Rothenberg EV, Anderson MK (2006) The basic helix–loop–helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of T cell precursors. J Immunol 177(1):109–119PubMedCrossRefGoogle Scholar
  398. Wang JJ, Chou SL, Xu L, Zhu X, Dong N, Shan AS, Chen ZH (2015) High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric alpha-helical peptides with Gly-Gly pairs. Sci Rep 5:15963PubMedPubMedCentralCrossRefGoogle Scholar
  399. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673PubMedPubMedCentralCrossRefGoogle Scholar
  400. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400PubMedCrossRefGoogle Scholar
  401. Wilson DR, Norton DD, Fugmann SD (2008) The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails. Dev Comp Immunol 32:1221PubMedPubMedCentralCrossRefGoogle Scholar
  402. Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MF, Göttgens B (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Stem Cell 7(4):532–544Google Scholar
  403. Xing K, Yang HS, Chen MY (2008) Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicas. Aquat Biol 2(1):85–92CrossRefGoogle Scholar
  404. Xue Z, Li H, Wang X, Li X, Liu Y, Sun J, Liu C (2015) A review of the immune molecules in the sea cucumber. Fish Shellfish Immunol 44(1):1–11PubMedCrossRefGoogle Scholar
  405. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485PubMedPubMedCentralCrossRefGoogle Scholar
  406. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55PubMedCrossRefGoogle Scholar
  407. Yonezawa A, Sugiura Y (1992) Tachyplesin I as a model peptide for antiparallel beta-sheet DNA binding motif. Nucleic Acids Symp Ser 27:161–162Google Scholar
  408. Yui M, Bayne C (1983) Echinoderm immunity: bacterial clearance by the sea urchin Strongylocentrotus purpuratus. Biol Bull 165:473–485PubMedCrossRefGoogle Scholar
  409. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMedCrossRefGoogle Scholar
  410. Zhang C, Wang Y, Rong X (2006) Isolation and identification of causative pathogen for skin ulcerative syndrome in Apostichopus japonicus. J Fish China 30:118–123Google Scholar
  411. Zhang P, Li C, Li Y, Zhang P, Shao Y, Jin C, Li T (2014) Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection. Dev Comp Immunol 44(2):370–377PubMedCrossRefGoogle Scholar
  412. Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G (2015) Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5:8693PubMedPubMedCentralCrossRefGoogle Scholar
  413. Zhao H, Mattila JP, Holopainen JM, Kinnunen PK (2001) Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys J 81(5):2979–2991PubMedPubMedCentralCrossRefGoogle Scholar
  414. Zhong L, Zhang F, Chang Y (2012) Gene cloning and function analysis of complement B factor-2 of Apostichopus japonicus. Fish Shellfish Immunol 33:504–513PubMedCrossRefGoogle Scholar
  415. Zhou Z, Sun D, Yang A, Dong Y, Chen Z, Wang X, Guan X, Jiang B, Wang B (2011) Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol 31:540–547PubMedCrossRefGoogle Scholar
  416. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130(3):202–215PubMedCrossRefGoogle Scholar
  417. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nature Reviews. Mol Cel Biol 7:9–19Google Scholar
  418. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. Courtney Smith
    • 1
  • Vincenzo Arriza
    • 2
  • Megan A. Barela Hudgell
    • 1
  • Gianpaolo Barone
    • 2
  • Andrea G. Bodnar
    • 3
    • 4
  • Katherine M. Buckley
    • 1
  • Vincenzo Cunsolo
    • 5
  • Nolwenn M. Dheilly
    • 6
  • Nicola Franchi
    • 7
  • Sebastian D. Fugmann
    • 8
  • Ryohei Furukawa
    • 9
  • Jose Garcia-Arraras
    • 10
  • John H. Henson
    • 11
  • Taku Hibino
    • 12
  • Zoe H. Irons
    • 11
  • Chun Li
    • 13
  • Cheng Man Lun
    • 1
    • 14
  • Audrey J. Majeske
    • 15
  • Matan Oren
    • 16
    • 17
    • 18
  • Patrizia Pagliara
    • 19
  • Annalisa Pinsino
    • 20
  • David A. Raftos
    • 21
  • Jonathan P. Rast
    • 22
    • 23
    • 24
  • Bakary Samasa
    • 11
  • Domenico Schillaci
    • 2
  • Catherine S. Schrankel
    • 23
    • 25
  • Loredana Stabili
    • 26
  • Klara Stensväg
    • 27
  • Elisse Sutton
    • 20
  1. 1.Department of Biological SciencesGeorge Washington UniversityWashingtonUSA
  2. 2.Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
  3. 3.Bermuda Institute of Ocean SciencesSt. George’s IslandBermuda
  4. 4.Gloucester Marine Genomics InstituteGloucesterUSA
  5. 5.Department of Chemical SciencesUniversity of CataniaCataniaItaly
  6. 6.School of Marine and Atmospheric Sciences, Stony Brook UniversityStony BrookUSA
  7. 7.Department of BiologyUniversity of PadovaPaduaItaly
  8. 8.Department of Biomedical Sciences and the Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung UniversityTao-Yuan CityTaiwan
  9. 9.Department of Biology, Research and Education Center for Natural Sciences, Keio UniversityKanagawaJapan
  10. 10.Department of BiologyUniversity of Puerto RicoSan JuanPuerto Rico
  11. 11.Department of BiologyDickinson CollegeCarlisleUSA
  12. 12.Faculty of Education, Saitama UniversitySaitamaJapan
  13. 13.Marbio, UiT The Arctic University of Norway, ForskningsparkenTromsøNorway
  14. 14.Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer InstituteFrederickUSA
  15. 15.Department of BiologyUniversity of Puerto Rico at MayagüezMayagüezPuerto Rico
  16. 16.Department of Biological SciencesGeorge Washington UniversityWashingtonUSA
  17. 17.Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  18. 18.Department of Molecular BiologyAriel UniversityArielIsrael
  19. 19.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
  20. 20.Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”PalermoItaly
  21. 21.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  22. 22.Sunnybrook Research Institute, University of TorontoTorontoCanada
  23. 23.Department of ImmunologyUniversity of TorontoTorontoCanada
  24. 24.Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  25. 25.Marine Biology Research DivisionScripps Institution of Oceanography, University of California San DiegoLa JollaUSA
  26. 26.National Research Council, Institute for Coastal Marine EnvironmentTarantoItaly
  27. 27.Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, BreivikaTromsøNorway

Personalised recommendations