Advertisement

Evolution of Immunity

  • Kurt Buchmann
Chapter

Abstract

Immunity mechanisms have existed since early life forms arose around 3700 million years ago (MYA) but the sophistication and complexity of reactions towards invasive molecules and organisms has increased immensely since. The Cambrian explosion around 500 MYA was associated with a rich expansion of life forms and species and with this event appeared a plethora of immune gene and protein variations. In general, the main pillars of immunity cover (1) recognition of self/non-self; (2) immunological memory; (3) cell-to-cell signaling; (4) humoral effector mechanisms; and (5) cellular effector mechanisms. The cellular arm of immunity is a basic requirement present in early amoebae that allowed them to demonstrate phagocytosis and extracellular trapping of pathogens. Unicellular organisms, such as ciliates, are also able to differentiate self from non-self. Immunological memory, involving cellular and humoral factors, can be traced in invertebrates, such as snails, providing the host organism with lasting protection against invading pathogens. Innate immunological reactions comprising both cellular and humoral factors have in this way proven protective for invertebrates, but with the advent of vertebrates the adaptive branch of immunity became highly developed, involving variable lymphocyte receptors and major histocompatibility complex (MHC). Teleost fishes display in principle a well-developed immune system dependent on myeloid and lymphoid cell lines, immunological memory, immunoglobulin production, MHC, and antigen presentation. Signal molecules orchestrating complex immune reactions can be traced in rather early invertebrates, but the richness and diversity of cytokine families appeared with fishes. The adaptive features have a close connection with the innate immune mechanisms that have in modern times developed into the armament protecting amphibians, reptiles, birds, and mammals from adverse molecules and pathogens.

References

  1. Abelli L (2016) Developmental biology of teleost lymphocytes. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 215–226Google Scholar
  2. Arizza V, Schillaci D (2016) Echinoderm antimicrobial peptides: the ancient arms of the deuterostome innate immune system. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 159–176Google Scholar
  3. Bartl S, Nonaka M (2015) MHC molecules of cartilaginous fishes. In: Smith SL, Sim RB, Flajnik MF (eds) Immunobiology of the shark. CRC Press – Taylor & Francis, Boca Raton, USAGoogle Scholar
  4. Baxter RHG, Contet A, Krueger K (2017) Arthropod innate immune systems and vector-borne diseases. Biochemistry 56:907–918CrossRefGoogle Scholar
  5. Berrien-Elliott MM, Wagner JA, Fehniger TA (2015) Human cytokine-induced memory like natural killer cells. J Innate Immun 7:563–571CrossRefGoogle Scholar
  6. Betti M, Ciacci C, Lorusso LC, Canonico B, Falcioni T, Gallo G, Canesi L (2006) Effects of tumour necrosis factor alpha (TNFLx) on Mytilus haemocytes: role of stress-activated mitogen-activated protein kinases (MAPKs). Biol Cell 98:233–244. https://doi.org/10.1242/BC20050049 CrossRefPubMedGoogle Scholar
  7. Bilej M, De Baetselier P, Beschin A (2000) Antimicrobial defense of the earthworm. Folia Microbiol 45(4):283–300. https://doi.org/10.1007/BF02817549 CrossRefGoogle Scholar
  8. Boudinot P, Zou J, Ota T, Buonocore F, Scapigliati G, Canapa G, Cannon J, Litman G, Hansen JD (2014) A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths. J Exp Zool (Mol Dev Evol) 9999B:1–23. https://doi.org/10.1002/jez.b.22559 CrossRefGoogle Scholar
  9. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:1–8. https://doi.org/10.3389/fimmu.2014.00459 CrossRefGoogle Scholar
  10. Cammarata M, Parisi MG, Vasta GR (2016) Evolution and immune function of fish lectins. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 239–256Google Scholar
  11. Canesi L, Pruzzo C (2016) Specificity of innate immunity in bivalves: a lesson from bacteria. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier – Academic Press, London. ISBN 978-0-12-803252-7, pp 79–92Google Scholar
  12. Cerenius L, Söderhäll K (2004) The prophenoloxidase activating system in invertebrates. Immunol Rev 198:116–126CrossRefGoogle Scholar
  13. Chettri JK, Holten-Andersen L, Raida MK, Kania P, Buchmann K (2011) PAMP induced expression of immune relevant genes in head kidney leukocytes of rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 35:476–482. https://doi.org/10.1016/j.dci.2010.12001 CrossRefPubMedGoogle Scholar
  14. Chettri JK, Kuhn JA, Jaafar RM, Kania PW, Møller OS, Buchmann K (2014) Epidermal response of rainbow trout to Ichthyobodo necator: immunohistochemical and gene expression studies indicate a Th1/Th2-like switch. J Fish Dis. https://doi.org/10.1111/jfd.12169 CrossRefGoogle Scholar
  15. Clark SE, Eichelberger KR, Weiser JN (2013) Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol Microbiol 88:603–618. https://doi.org/10.1111/mmi.12214 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cooper EL (1968) Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 6:322–337CrossRefGoogle Scholar
  17. Cooper EL (1969) Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171:69–73CrossRefGoogle Scholar
  18. Cooper EL (2010) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7:55–78. https://doi.org/10.1016/j.plrev.2009.12.001 CrossRefPubMedGoogle Scholar
  19. Coscia MR, Giacomelli S, Oreste U (2016) Teleost immunoglobulins. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 257–274Google Scholar
  20. Cytrynska M, Wojda I, Jakubowicz T (2016) How insects combat infections. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 117–128Google Scholar
  21. Danchin EG, Abi-Rached L, Gilles A, Pontarotti P (2003) Conservation of the MHC-like region throughout evolution. Immunogenetics 55:141–148CrossRefGoogle Scholar
  22. Desjardins M, Houde M, Gagnon E (2005) Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol Rev 207:158–167. https://doi.org/10.1111/j.0105-2896.2005.00319.x CrossRefPubMedGoogle Scholar
  23. Detournay O, Schnitzler CE, Poole A, Weis VM (2012) Regulation of cnidarian-dinoflagellate mutualisms: evidence that activation of a host TGF beta innate immune pathway promotes tolerance to the symbiont. Dev Comp Immunol 38(4):525–537. https://doi.org/10.1016/j.dci.2012.08.008 CrossRefPubMedGoogle Scholar
  24. Dishaw LJ, Litman GW (2009) Invertebrate allorecognition: the origins of histocompatibility. Curr Biol 19(7):R286–R288. https://doi.org/10.1093/bfg.els007 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dunin-Horkawicz S, Klaus KO, Lupas AN (2014) Procaryotic protein networks mediating innate immunity and apoptosis. J Mol Biol 426:1568–1582. https://doi.org/10.1016/j.jmb.2013.11.030 CrossRefPubMedGoogle Scholar
  26. Dzik JM (2010) The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol 57:443–466PubMedGoogle Scholar
  27. Elvitigala DAS, Premachandra HKA, Whang I, Nam B-H, Lee J (2013) Molecular insights of the first gastropod TLR counterpart from disk abalone (Haliotis discus discus) revealing its transcriptional modulation under pathogenic stress. Fish Shellfish Immunol 35:334–342. https://doi.org/10.1016/fsi.2013.04.031 CrossRefPubMedGoogle Scholar
  28. Engelmann P, Hayashi Y, Bodo K, Molnar L (2016) New aspects of earthworm innate immunity: novel molecules and old proteins with unexpected functions. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 53–66Google Scholar
  29. Franchi N, Ballarin L (2016) Cytotoxic cells of compound ascidians. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 193–204Google Scholar
  30. Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TCG (2012) My D88-deficient Hydra reveal an ancient function of TLR signaling in sensing in sensing bacterial colonizers. Proc Natl Acad Sci U S A 109(47):19374–19379. https://doi.org/10.1073/pnas.1213110109 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fujito NT, Sugimoto S, Nonaka M (2010) Evolution of thioester containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone, Haliplanella lineate. Dev Comp Immunol 34:775–784. https://doi.org/10.1016/j.dci.2010.02011 CrossRefPubMedGoogle Scholar
  32. Fuller- Espie SL (2010) Vertebrate cytokines interleukin12 and gamma interferon, but not interleukin 10, enhance phagocytosis in the annelid Eisenia hortensis. J Invertebr Pathol 104:119–124. https://doi.org/10.1016/j.pp.2010.02.009 CrossRefPubMedGoogle Scholar
  33. Gao Z, Li M, Ma J, Zhang SC (2014) An Amphioxus gC1q protein binds human IgG and initiates the classical pathway: implications for a C1q-mediated complement system in the basal chordate. Eur J Immunol 44(12):3680–3695CrossRefGoogle Scholar
  34. Garcia AB, Pierce RJ, Gourbal B, Werkmeister E, Colinet D, Reichart JM, Dissous C, Coustau C (2010) Involvement of the cytokine MIF in the snail host immune response to the parasite Schistosoma mansoni. PLoS Pathog 6:e1001115. https://doi.org/10.1371/journal.ppat.1001115 CrossRefGoogle Scholar
  35. Gosh J, Lun CM, Majeske AJ, Sacchi S, Schrankel CS, Smith LC (2011) Invertebrate immune diversity. Dev Comp Immunol 35:959–974. https://doi.org/10.1016/j.dci.2010.12.009 CrossRefGoogle Scholar
  36. Hahn UK, Bender RC, Bayne CJ (2000) Production of reactive oxygen species by hemocytes of Biomphalaria glabrata: carbohydrate-specific stimulation. Dev Comp Immunol 24:531–541. https://doi.org/10.1016/S0145-305x(00)00017-3 CrossRefPubMedGoogle Scholar
  37. Hahn UK, Bender RC, Bayne CJ (2001) Involvement of nitric oxide in killing Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata. J Parasitol 87(4):778–785. https://doi.org/10.1645/0022-3395(2001)087 CrossRefPubMedGoogle Scholar
  38. Hassenkam T, Andersson MP, Dalby KN, Mackenzie DMA, Rosing MT (2017) Elements of Eoarchean life trapped in mineral inclusions. Nature 0:1–15. https://doi.org/10.1038/nature23261 CrossRefGoogle Scholar
  39. Hauton C (2012) The scope of the crustacean immune system for disease control. J Invertebr Pathol 110:251–260. https://doi.org/10.1016/j.jip.2012.03.005 CrossRefPubMedGoogle Scholar
  40. Héja D, Kocsics A, Dobo J, Szilagyi K, Szasz R, Zavodszky P, Pal G, Gal P (2012) Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci U S A 109(26):10498–10503CrossRefGoogle Scholar
  41. Jin P, Hu J, Qian JJ, Chen LM, Xu XF, Ma F (2012) Identification and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) gene from Amphioxus (Branchiostoma belcheri): an insight into the innate immunity of Amphioxus and the evolution of LITAF. Fish Shellfish Immunol 32:1223–1228. https://doi.org/10.1016/j.fsi.2012.03.030 CrossRefPubMedGoogle Scholar
  42. Kaiser P (2010) Advances in avian immunology – prospects for disease control: a review. Avian Pathol 39(5):309–324. https://doi.org/10.1080/03079457.2010.508777 CrossRefPubMedGoogle Scholar
  43. Kasahara M, Suzuki T, Du Pasquier L (2004) On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol 25(2):105–111. https://doi.org/10.1016/j.it.2003.11.005 CrossRefPubMedGoogle Scholar
  44. Kishishita N, Nagawa F (2014) Evolution of adaptive immunity: implications of a third lymphocyte lineage in lampreys. BioEssays 36:244–250. https://doi.org/10.1002/bies.201300145 CrossRefPubMedGoogle Scholar
  45. Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190(1):95–122. https://doi.org/10.1034/j.1600-065x.2002.19008.x CrossRefPubMedGoogle Scholar
  46. Lin XH, Söderhäll I (2011) Crustacean hematopoiesis and the astakine cytokines. Blood 117:6417–6424. https://doi.org/10.1182/blood-2010-11320614 CrossRefPubMedGoogle Scholar
  47. Lin L, Zhang JQ (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18:2. https://doi.org/10.1186/s12865-016-0187-3 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lin XH, Novotny M, Söderhäll K, Söderhäll I (2010) Ancient cytokines, the role of astakines as hematopoietic growth factors. J Biol Chem 285:28577–28586. https://doi.org/10.1074/jbc.M110.138560 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Litman GW, Rast JP, Fugmann SD (2010) The origins of vertebrate adaptive immunity. Nat Rev Immunol 10:543–553. https://doi.org/10.1038/nri2807 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Malagoli D, Sacchi S, Ottaviandi E (2008) Unpaired (upd)-3 expression and other immune-related functions are stimulated by interleukin-8 in Drosophila melanogaster SL2 cell line. Cytokine 44:269–274. https://doi.org/10.1016/j.cyto.2008.08.011 CrossRefPubMedGoogle Scholar
  51. Meng FY, Mai KS, Ma HM, Zhang WB (2009) The evolution of echinoderm immunology. Prog Biochem Biophys 36(7):803–809. https://doi.org/10.3724/SP.J.1206.2008.00761 CrossRefGoogle Scholar
  52. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32(06):463–488CrossRefGoogle Scholar
  53. Mills CD, Ley K, Buchmann K, Canton J (2015) Sequential immune responses: the weapons of immunity. J Innate Immun 7:443–449. https://doi.org/10.1159/000380910 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nicola F, Loriano B (2017) Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. Fish Shellfish Immunol 63:157–164CrossRefGoogle Scholar
  55. Nicolo P, Matteo C, Daniela P, Aiti V (2016) Inflammatory response of the ascidian Ciona intestinalis. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 177–192Google Scholar
  56. Nonaka M, Yoshizaki F (2004) Primitive complement system of invertebrates. Immunol Rev 198:203–215. https://doi.org/10.1111/j.0105-2896.2004.00118.x CrossRefPubMedGoogle Scholar
  57. Peiser L, Mukhopadhyay S, Gordon S (2002) Scavenger receptors in innate immunity. Curr Opin Immunol 14:123–128. https://doi.org/10.1016/S0952-7915(01)00307-7 CrossRefPubMedGoogle Scholar
  58. Peng MX, Niu DH, Wang F, Chen ZY, Li J (2016) Complement C3 gene: expression characterization and innate immune response in razor clam Sinonovacula constricta. Fish Shellfish Immunol 55:223–232CrossRefGoogle Scholar
  59. Perovic-Ottstadt S, Adell T, Proksch P, Wiens M, Korshev M, Gamulin V, Müller IM, Müller WE (2004) A (1-3) beta recognition protein from the sponge Suberites domuncula. Mediated activation of fibrinogen related protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937. https://doi.org/10.1111/j.1432-1033.2004.04102.x CrossRefPubMedGoogle Scholar
  60. Pinaud S, Portela J, Duval D, Nowacki FC et al (2016) A shift from cellular to humoral responses contributes innate immune memory in the vector snail Biomphalaria glabrata. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1005361 CrossRefGoogle Scholar
  61. Rhodes CP, Ratcliffe NA, Rowley AF (1982) Presence of coelomocytes in the primitive chordate Amphioxus (Branchiostoma lanceolatum). Science 217:263–265. https://doi.org/10.1126/science.7089565 CrossRefPubMedGoogle Scholar
  62. Roberts S, Gueguen Y, de Lorgeril J, Goetz F (2008) Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Dev Comp Immunol 32(9):1099–1104. https://doi.org/10.1016/j.dci.2008.02.006 CrossRefPubMedGoogle Scholar
  63. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillasmury C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355CrossRefGoogle Scholar
  64. Roth O, Kurtz J (2009) Phagocytosis mediates specificity in the immune defence of an invertebrate, the woodlouse Porcellio scabe (Crustacea: Isopoda). Dev Comp Immunol 33(11):1151–1155CrossRefGoogle Scholar
  65. Salazar-Jaramillo L, Paspati A, Van de Zande L, Vermeulen CJ, Schwander T, Wertheim B (2014) Evolution of a cellular immune response in Drosophila: a phenotypic and genomic comparative analysis. Genome Biol Evol 6:273–289CrossRefGoogle Scholar
  66. Schmid-Hempel P (2009) Immune defence, parasite evasion strategies and their relevance for macroscopic phenomena such as virulence. Philos Trans R Soc 364:85–98. https://doi.org/10.1098/rstb.2008.0157 CrossRefGoogle Scholar
  67. Schonhofer C, Coatsworth H, Caicedo P, Ocampo C, Lowenberger C (2016) Aedes aegypti immune responses to Dengue virus. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 129–144Google Scholar
  68. Scocchi M, Furlan M, Venier P, Pallavicini A (2016) Cathelicidins: an ancient family of fish antimicrobial peptides. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 227–238Google Scholar
  69. Secombes CJ, Zou J (2017) Evolution of interferons and interferon receptors. Front Immunol 8:1–10. https://doi.org/10.3389/fimmu.2017.00209 CrossRefGoogle Scholar
  70. Skanta F, Roubalova R, Dvorak J, Prochazkova P, Bilej M (2013) Molecular cloning and expression of TLR in the Eisenia and rei earthworm. Dev Comp Immunol 41(4):694–702. https://doi.org/10.1016/j.dci.2013.08.009 CrossRefPubMedGoogle Scholar
  71. Suurväli J, Jouneau L, Thépot D, Grusea S, Pontarotti P, Pasquier LD, Boudinot SR, Boudinot P (2014) The proto-MHC of placozoans, a region specialized in cellular stress and ubiquitination (proteasome pathways). J Immunol. https://doi.org/10.4049/jimmunol.1401177 CrossRefGoogle Scholar
  72. Vallesi A, Alimenti C, Luporini P (2016) Ciliate pheromones: primordial self−/nonself-recognition signals. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 1–16Google Scholar
  73. Venier P, Domeneghetti S, Sharma N, Pallavivini A, Gerdol M (2016) Immune related signaling in mussel and bivalves. In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 93–106Google Scholar
  74. Venkatesh B, Lee AP, Ravi V et al (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179. https://doi.org/10.1038/nature12826 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vizioli J, Drago F, Lefebvre C (2016) Neuroprotection and immunity in the medicinal leech Hirudo medicinalis: what about microglia? In: Ballarin L, Cammarata M (eds) Lessons in immunity – from single cell organisms to mammals. Elsevier –Academic Press, London. ISBN 978-0-12-803252-7, pp 64–78Google Scholar
  76. Wang T, Secombes CJ (2013) The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol 35:1703–1718. https://doi.org/10.1016/j.fsi.2013.08.030 CrossRefPubMedGoogle Scholar
  77. Watthanasororut A, Söderhäll K, Jiravanichpaisal P, Söderhäll I (2011) An ancient cytokine, astakine, mediates circadian regulation of invertebrate hematopoiesis. Cell Mol Life Sci 68(2):315–323. https://doi.org/10.1007/s00018-010-0458-8 CrossRefGoogle Scholar
  78. Yuen B, Bayes JM, Degnan SM (2013) The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 31:106–120. https://doi.org/10.1093/molbev/mst174 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zeng DG, Lei AY, Chen XH (2013) Cloning, characterization and expression of the macrophage migration inhibitory factor gene from Pacific white shrimp Litopenaeus vannamei (Penaeidae). Genet Mol Res 12:5872–5879. https://doi.org/10.4238/2013.November.22.15 CrossRefPubMedGoogle Scholar
  80. Zhang Y-A, Salinas I, Li J, Parra D, Bjork S, Xu Z, LaPatra S, Bartholomew J, Sunyer JO (2010a) IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11:827–836. https://doi.org/10.1038/ni.1913 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang Y, Zhao JM, Zhang H, Gai YC, Wang LL, Li FM, Yang JL, Qiu LM, Song LS (2010b) The involvement of suppressors of cytokine signaling 2 (SOCS2) in immune defense responses of Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol 34:42–48. https://doi.org/10.1016/j.dci.2009.08.001 CrossRefPubMedGoogle Scholar
  82. Zhang Y, Li J, Yu F, He XC, Yu ZN (2013) Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas. Fish Shellfish Immunol 34:1071–1077. https://doi.org/10.1016/j.fsi.2013.01.014 CrossRefPubMedGoogle Scholar
  83. Zhang YN, Xu K, Deng AQ, Fu X, Xu AL, Liu X (2014) An Amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1. Proc Natl Acad Sci U S A 11:397–402. https://doi.org/10.1073/pnas.1318843111 CrossRefGoogle Scholar
  84. Zhang X, Zhuchenko O, Kuspa A, Soldati T (2015) Social amoebae trap and kill bacteria by casting DNA nets. Nat Commun 7:10938. https://doi.org/10.1038/ncomms10938. (1-9)CrossRefGoogle Scholar
  85. Zhou L, Zhang LH, Camara M, He YW (2017) The DSF family of quorum sensing signals: diversity, biosynthesis and turnover. Trends Microbiol 25(4):293–303. https://doi.org/10.1016/j.tim.2016.11.013 CrossRefPubMedGoogle Scholar
  86. Zimmerman LM, Vogel LA, Bowden RM (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213:661–671. https://doi.org/10.1242/jeb.038315 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of CopenhagenCopenhagenDenmark

Personalised recommendations