In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration

  • Diana BichoEmail author
  • Sandra Pina
  • J. Miguel Oliveira
  • Rui L. Reis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.


Static models Dynamic models Monocultures Co-cultures Ex vivo cultures 



The research leading to this work has received funding from the Portuguese Foundation for Science and Technology for the M-ERA.NET/0001/2014 project and for the funds provided under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015).


  1. 1.
    Hoemann CD, Lafantaisie-Favreau C-H, Lascau-Coman V et al (2012) The cartilage-bone interface. J Knee Surg 25:85–97. CrossRefPubMedGoogle Scholar
  2. 2.
    Haines RW (1975) The histology of epiphyseal union in mammals. J Anat 120:1–25PubMedPubMedCentralGoogle Scholar
  3. 3.
    Hunziker EB, Kapfinger E, Geiss J (2007) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil 15:403–413. CrossRefPubMedGoogle Scholar
  4. 4.
    Hayes AJ, MacPherson S, Morrison H et al (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 203:469–479CrossRefGoogle Scholar
  5. 5.
    Khanarian NT, Boushell MK, Spalazzi JP et al (2014) FTIR-I compositional mapping of the cartilage-to-bone Interface as a function of tissue region and age. J Bone Miner Res 29:2643–2652. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang L, Tsang KY, Tang HC et al (2014) Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 111:12097–12102. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Atesok K, Doral MN, Karlsson J et al (2016) Multilayer scaffolds in orthopaedic tissue engineering. Knee Surgery, Sport Traumatol Arthrosc 24:2365–2373. CrossRefGoogle Scholar
  8. 8.
    Liu Y, Lian Q, He J et al (2011) Study on the microstructure of human articular cartilage/bone Interface. J Bionic Eng 8:251–262. CrossRefGoogle Scholar
  9. 9.
    Goldring SR, Goldring MB (2016) Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone cross talk. Nat Rev Rheumatol 12:632–644. CrossRefPubMedGoogle Scholar
  10. 10.
    Mithoefer K, McAdams TR, Scopp JM, Mandelbaum BR (2009) Emerging options for treatment of articular cartilage injury in the athlete. Clin Sports Med 28:25–40. CrossRefPubMedGoogle Scholar
  11. 11.
    Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Jt Surg - Br 87–B:445–449. CrossRefGoogle Scholar
  12. 12.
    Iqbal Z, Kumaraswamy V, Srivastava P et al (2013) Role of autologous chondrocyte transplantation in articular cartilage defects: an experimental study. Indian J Orthop 47:129. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Röhner E, Pfitzner T, Preininger B et al (2016) Temporary arthrodesis using fixator rods in two-stage revision of septic knee prothesis with severe bone and tissue defects. Knee Surgery, Sport Traumatol Arthrosc 24:84–88. CrossRefGoogle Scholar
  14. 14.
    Siclari A, Mascaro G, Gentili C et al (2014) Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant. Knee Surgery, Sport Traumatol Arthrosc 22:1225–1234. CrossRefGoogle Scholar
  15. 15.
    Alexander PG, Gottardi R, Lin H et al (2014) Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med 239:1080–1095. CrossRefGoogle Scholar
  16. 16.
    Worthen J, Waterman BR, Davidson PA, Lubowitz JH (2012) Limitations and sources of bias in clinical knee cartilage research. Arthrosc J Arthrosc Relat Surg 28:1315–1325. CrossRefGoogle Scholar
  17. 17.
    Johnson CI, Argyle DJ, Clements DN (2016) In vitro models for the study of osteoarthritis. Vet J 209:40–49. CrossRefPubMedGoogle Scholar
  18. 18.
    Gibson JS, Milner PI, White R et al (2007) Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflügers Arch - Eur J Physiol 455:563–573. CrossRefGoogle Scholar
  19. 19.
    Grimshaw MJ, Mason RM (2001) Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthr Cartil 9:357–364. CrossRefPubMedGoogle Scholar
  20. 20.
    Murphy CL, Sambanis A (2001) Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng 7:791–803. CrossRefPubMedGoogle Scholar
  21. 21.
    Yang PJ, Temenoff JS (2009) Engineering Orthopedic tissue interfaces. Tissue Eng Part B Rev 15:127–141. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surgery, Sport Traumatol Arthrosc 20:407–422. CrossRefGoogle Scholar
  23. 23.
    Butler LM, McGettrick HM, Nash GB (2016) Static and dynamic assays of cell adhesion relevant to the vasculature. Methods Mol Biol 1430:231–248CrossRefPubMedGoogle Scholar
  24. 24.
    Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100:59–74. CrossRefPubMedGoogle Scholar
  25. 25.
    Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sailon AM, Allori AC, Davidson EH et al (2009) A novel flow-perfusion bioreactor supports 3D dynamic cell culture. J Biomed Biotechnol 2009:873816. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Umansky R (1966) The effect of cell population density on the developmental fate of reaggregating mouse limb bud mesenchyme. Dev Biol 13:31–56. CrossRefPubMedGoogle Scholar
  28. 28.
    Sanchez C, Deberg MA, Bellahcène A et al (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455. CrossRefPubMedGoogle Scholar
  29. 29.
    Hunter GK, Hauschka PV, Poole AR et al (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317(Pt 1):59–64CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Greco KV, Iqbal AJ, Rattazzi L et al (2011) High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol 82:1919–1929. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ahrens PB, Solursh M, Reiter RS (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol 60:69–82CrossRefPubMedGoogle Scholar
  32. 32.
    Jähn K, Richards RG, Archer CW, Stoddart MJ (2010) Pellet culture model for human primary osteoblasts. Eur Cell Mater 20:149–161. doi: vol020a13 [pii]CrossRefPubMedGoogle Scholar
  33. 33.
    Kirkpatrick CJ, Fuchs S, Unger RE (2011) Co-culture systems for vascularization — learning from nature. Adv Drug Deliv Rev 63:291–299. CrossRefPubMedGoogle Scholar
  34. 34.
    Genova T, Munaron L, Carossa S, Mussano F (2016) Overcoming physical constraints in bone engineering: “the importance of being vascularized”. J Biomater Appl 30:940–951. CrossRefPubMedGoogle Scholar
  35. 35.
    Pirraco RP, Marques AP, Reis RL (2010) Cell interactions in bone tissue engineering. J Cell Mol Med 14:93–102. CrossRefPubMedGoogle Scholar
  36. 36.
    Lee P, Tran K, Zhou G et al (2015) Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds. Soft Matter 11:7648–7655. CrossRefPubMedGoogle Scholar
  37. 37.
    Mesallati T, Sheehy EJ, Vinardell T et al (2015) Tissue engineering scaled-up, anatomically shaped osteochondral constructs for joint resurfacing. Eur Cell Mater 30:163–185CrossRefPubMedGoogle Scholar
  38. 38.
    Baldwin J, Antille M, Bonda U et al (2014) In vitro pre-vascularisation of tissue-engineered constructs a co-culture perspective. Vasc Cell 6:1–16. CrossRefGoogle Scholar
  39. 39.
    Hubka KM, Dahlin RL, Meretoja VV et al (2014) Enhancing Chondrogenic phenotype for cartilage tissue engineering: monoculture and co-culture of articular chondrocytes and mesenchymal stem cells. Tissue Eng Part B 20:1–50. CrossRefGoogle Scholar
  40. 40.
    Meretoja VV, Dahlin RL, Wright S et al (2013) The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials 34:4266–4273. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wu L, Leijten JCH, Georgi N et al (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 17:1425–1436. CrossRefPubMedGoogle Scholar
  42. 42.
    Ahmed N, Gan L, Nagy A et al (2009) Cartilage tissue formation using Redifferentiated passaged chondrocytes in vitro. Tissue Eng Part A 15:665–673. CrossRefPubMedGoogle Scholar
  43. 43.
    Qing C, Wei-ding C, Wei-min F (2011) Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol 44:303–310CrossRefGoogle Scholar
  44. 44.
    Olivos-Meza A, Velasquillo Martínez C, Olivos Díaz B et al (2017) Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study. Cell Tissue Bank 18:369–381. CrossRefPubMedGoogle Scholar
  45. 45.
    Zhong J, Guo B, Xie J et al (2016) Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter. Bone Res 4:15036. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    ter Huurne M, Schelbergen R, Blattes R et al (2012) Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 64:3604–3613. CrossRefPubMedGoogle Scholar
  47. 47.
    Schulze S, Wehrum D, Dieter P, Hempel U (2017) A supplement-free osteoclast-osteoblast co-culture for pre-clinical application. J Cell Physiol.
  48. 48.
    Janardhanan S, Wang MO, Fisher JP (2012) Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations. Tissue Eng Part B Rev 18:312–321. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Panseri S, Russo A, Cunha C et al (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surgery, Sport Traumatol Arthrosc 20:1182–1191. CrossRefGoogle Scholar
  50. 50.
    Pesesse L, Sanchez C, Henrotin Y (2011) Osteochondral plate angiogenesis: a new treatment target in osteoarthritis. Jt Bone Spine 78:144–149. CrossRefGoogle Scholar
  51. 51.
    Gawlitta D, Farrell E, Malda J et al (2010) Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng Part B Rev 16:385–395. CrossRefPubMedGoogle Scholar
  52. 52.
    Tokuhara Y, Wakitani S, Imai Y et al (2010) Repair of experimentally induced large osteochondral defects in rabbit knee with various concentrations of Escherichia coli-derived recombinant human bone morphogenetic protein-2. Int Orthop 34:761–767. CrossRefPubMedGoogle Scholar
  53. 53.
    UNGER R, SARTORIS A, PETERS K et al (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28:3965–3976. CrossRefPubMedGoogle Scholar
  54. 54.
    Goerke SM, Plaha J, Hager S et al (2012) Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon Cocultivation. Tissue Eng Part A 18:120914061009005. CrossRefGoogle Scholar
  55. 55.
    Davis GE, Bayless KJ, Mavila A (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec 268:252–275. CrossRefPubMedGoogle Scholar
  56. 56.
    Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and Tubulogenesis during Vasculogenesis and Angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Evensen L, Micklem DR, Blois A et al (2009) Mural cell associated VEGF is required for Organotypic vessel formation. PLoS One 4:e5798. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kim K-I, Park S, Im G-I (2014) Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials 35:4792–4804. CrossRefPubMedGoogle Scholar
  59. 59.
    Pepper MS, Montesano R, Vassalli J-D, Orci L (1991) Chondrocytes inhibit endothelial sprout formation in vitro: evidence for involvement of a transforming growth factor-beta. J Cell Physiol 146:170–179. CrossRefPubMedGoogle Scholar
  60. 60.
    Yuan XL, Meng HY, Wang YC et al (2014) Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr Cartil 22:1077–1089. CrossRefPubMedGoogle Scholar
  61. 61.
    Pan J, Wang B, Li W et al (2012) Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51:212–217. CrossRefPubMedGoogle Scholar
  62. 62.
    Pan J, Zhou X, Li W et al (2009) In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 27:1347–1352. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jiang J, Leong NL, Mung JC et al (2008) Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthr Cartil 16:70–82. CrossRefPubMedGoogle Scholar
  64. 64.
    Çakmak S, Çakmak AS, Kaplan DL, Gümüşderelioğlu M (2016) A silk fibroin and peptide Amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226. CrossRefPubMedGoogle Scholar
  65. 65.
    Farrell E, Both SK, Odörfer KI et al (2011) In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord 12:31. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Janicki P, Kasten P, Kleinschmidt K et al (2010) Chondrogenic pre-induction of human mesenchymal stem cells on β-TCP: enhanced bone quality by endochondral heterotopic bone formation. Acta Biomater 6:3292–3301. CrossRefPubMedGoogle Scholar
  67. 67.
    Scotti C, Piccinini E, Takizawa H et al (2013) Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci 110:3997–4002. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Panseri S, Montesi M, Dozio SM et al (2016) Biomimetic scaffold with aligned microporosity designed for dentin regeneration. Front Bioeng Biotechnol 4:48. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Font Tellado S, Bonani W, Balmayor ER et al (2017) Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng Part A 23:859–872. CrossRefPubMedGoogle Scholar
  70. 70.
    O’Shea TM, Miao X (2008) Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev 14:447–464. CrossRefPubMedGoogle Scholar
  71. 71.
    Oliveira JM, Rodrigues MT, Silva SS et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137. CrossRefPubMedGoogle Scholar
  72. 72.
    Yan L-P, Silva-Correia J, Oliveira MB et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241. CrossRefPubMedGoogle Scholar
  73. 73.
    Kang H, Peng J, Lu S et al (2014) In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med 8:442–453. CrossRefPubMedGoogle Scholar
  74. 74.
    Zheng X-F, Lu S-B, Zhang W-G et al (2011) Mesenchymal stem cells on a decellularized cartilage matrix for cartilage tissue engineering. Biotechnol Bioprocess Eng 16:593–602. CrossRefGoogle Scholar
  75. 75.
    Sutherland AJ, Beck EC, Dennis SC et al (2015) Decellularized cartilage may be a Chondroinductive material for osteochondral tissue engineering. PLoS One 10:e0121966. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Johnson CC, Johnson DJ, Garcia GH et al (2017) High short-term failure rate associated with Decellularized osteochondral allograft for treatment of knee cartilage lesions. Arthrosc J Arthrosc Relat Surg.
  77. 77.
    Vindas Bolaños RA, Cokelaere SM, Estrada McDermott JM et al (2017) The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthr Cartil 25:413–420. CrossRefPubMedGoogle Scholar
  78. 78.
    Do A-V, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4:1742–1762. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    JoVE Science Education Database. Developmental Biology. Explant Culture for Developmental Studies. JoVE, Cambridge, MA, (2018). Accessed 22 Sep 2017
  80. 80.
    Marino S, Staines KA, Brown G et al (2016) Models of ex vivo explant cultures: applications in bone research. Bonekey Rep.
  81. 81.
    Madsen SH, Goettrup AS, Thomsen G et al (2011) Characterization of an ex vivo femoral head model assessed by markers of bone and cartilage turnover. Cartilage 2:265–278. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    de Vries-van Melle ML, Mandl EW, Kops N et al (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53. CrossRefPubMedGoogle Scholar
  83. 83.
    You J, Yellowley CE, Donahue HJ et al (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122:387–393CrossRefPubMedGoogle Scholar
  84. 84.
    Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48:171–181. CrossRefPubMedGoogle Scholar
  85. 85.
    Grayson WL, Bhumiratana S, Grace Chao PH et al (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr Cartil 18:714–723. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Malafaya PB, Reis RL (2009) Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 5:644–660. CrossRefPubMedGoogle Scholar
  87. 87.
    R, Canadas (2015) Oliveira JM. Marques AP RR, Multi-chambers bioreactor, methods and usesGoogle Scholar
  88. 88.
    Canadas R, Oliveira JM, Marques AP RR (2014) Rotational dual chamber bioreactor: methods and uses thereofGoogle Scholar
  89. 89.
    Lozito TP, Alexander PG, Lin H et al (2013) Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res Ther 4:S6. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Responte DJ, Lee JK, Hu JC, Athanasiou KA (2012) Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J 26:3614–3624. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Oftadeh R, Perez-Viloria M, Villa-Camacho JC et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137:108021. CrossRefGoogle Scholar
  92. 92.
    Elder S, Fulzele K, McCulley W (2005) Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech Model Mechanobiol 3:141–146. CrossRefPubMedGoogle Scholar
  93. 93.
    Gaspar DA, Gomide V, Monteiro FJ (2012) The role of perfusion bioreactors in bone tissue engineering. Biomatter 2:167–175. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189. CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang J, Wei X, Zeng R et al (2017) Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Futur Sci OA 3:FSO187. CrossRefGoogle Scholar
  97. 97.
    Jun Y, Kang E, Chae S, Lee S-H (2014) Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 14:2145–2160. CrossRefPubMedGoogle Scholar
  98. 98.
    Hasan A, Paul A, Vrana NE et al (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35:7308–7325. CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Aroonnual A, Janvilisri T, Ounjai P, Chankhamhaengdecha S (2017) Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria. Essays Biochem 61:91–101. CrossRefPubMedGoogle Scholar
  100. 100.
    Goldman SM, Barabino GA (2016) Spatial engineering of osteochondral tissue constructs through Microfluidically directed differentiation of mesenchymal stem cells. Biores Open Access 5:109–117. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kim KM, Choi YJ, Hwang J-H et al (2014) Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One 9:e92427. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hasani-Sadrabadi MM, Pour Hajrezaei S, Hojjati Emami S et al (2015) Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine Nanotechnology, Biol Med 11:1809–1819. CrossRefGoogle Scholar
  103. 103.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diana Bicho
    • 1
    • 2
    Email author
  • Sandra Pina
    • 2
  • J. Miguel Oliveira
    • 2
    • 3
  • Rui L. Reis
    • 2
    • 3
  1. 1.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of MinhoBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryGuimarãesPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of MinhoGuimarãesPortugal

Personalised recommendations