Advertisement

Combination of Polymeric Supports and Drug Delivery Systems for Osteochondral Regeneration

  • Luis Rojo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)

Abstract

Musculoskeletal conditions have been defined by European National Health systems as one of the key themes which should be featured during the present decade as a consequence of the significant healthcare and social support costs. Among others, articular cartilage degeneration due to traumatic and degenerative lesion injury or other pathologies commonly results in the development of musculoskeletal disorders such as osteoarthritis and arthritis rheumatoid, eventually leading to progressive articular cartilage and joint destruction especially at osteochondral interphase, that account for more disability among the elderly than any other diseases constituting a global social challenge that needs a multidisciplinary response from the scientific community. Current treatments for damaged osteoarthritic joint cartilage include the use of disease-modifying drugs and ultimately joint arthroplasty as unavoidable surgical intervention due to the limited ability of articular cartilage to self-regenerate. However, potential future regenerative therapies based on tissue engineering strategies are likely to become more important to facilitate the recruitment of repairing cells and improve musculoskeletal metabolism. In addition, emerging bioprinting technologies in combination with implemented manufacturing techniques such electrospinning or cryogelation processes have permitted the development of new tissue substitutes with precise control of sizes and shapes to recreate the complex physiological, biomechanical and hierarchical microstructure of osteochondral interphases. Thus, this chapter will provide an upgrade on the state of the art focusing the most relevant developments on polymer scaffolds and drug delivery systems for osteochondral regeneration.

Keywords

Biomimetic scaffolds Osteochondral regeneration Cartilage Drug delivery 

References

  1. 1.
    Smith E, Hoy D, Cross M, Merriman TR, Vos T, Buchbinder R, Woolf A, March L (2014) The global burden of gout: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 73(8):1470–1476.  https://doi.org/10.1136/annrheumdis-2013-204647 CrossRefPubMedGoogle Scholar
  2. 2.
    Storheim K, Zwart J-A (2014) Musculoskeletal disorders and the Global Burden of Disease study. Ann Rheum Dis 73(6):949–950.  https://doi.org/10.1136/annrheumdis-2014-205327 CrossRefPubMedGoogle Scholar
  3. 3.
    Vieira S, Vial S, Maia F, Carvalho M, Reis R, Granja P, Oliveira J (2015) Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Adv 5:77996–78005CrossRefGoogle Scholar
  4. 4.
    Buchbinder R, Maher C, Harris IA (2015) Setting the research agenda for improving health care in musculoskeletal disorders. Nat Rev Rheumatol 11(10):597–605.  https://doi.org/10.1038/nrrheum.2015.81 CrossRefPubMedGoogle Scholar
  5. 5.
    Hasani-Sadrabadi MM, Pour Hajrezaei S, Hojjati Emami S, Bahlakeh G, Daneshmandi L, Dashtimoghadam E, Seyedjafari E, Jacob KI, Tayebi L (2015) Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine 11(7):1809–1819.  https://doi.org/10.1016/j.nano.2015.04.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Ringe J, Burmester GR, Sittinger M (2012) Regenerative medicine in rheumatic disease—progress in tissue engineering. Nat Rev Rheumatol 8(8):493–498CrossRefPubMedGoogle Scholar
  7. 7.
    Ye K, Felimban R, Moulton S, Wallace G, Di Bella C, Traianedes K, Choong PFM, Myers D, Choong P (2013) Bioengineering of articular cartilage: past, present and future. Regen Med 8(3):333–349CrossRefPubMedGoogle Scholar
  8. 8.
    Ringe J, Sittinger M (2014) Regenerative medicine: selecting the right biological scaffold for tissue engineering. Nat Rev Rheumatol 10(7):388–389.  https://doi.org/10.1038/nrrheum.2014.79 CrossRefPubMedGoogle Scholar
  9. 9.
    Gothard D, Smith EL, Kanczler JM, Black CR, Wells JA, Roberts CA, White LJ, Qutachi O, Peto H, Rashidi H, Rojo L, Stevens MM, El Haj AJ, Rose F, Shakesheff KM, Oreffo ROC (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS One 10(12):e0145080.  https://doi.org/10.1371/journal.pone.0145080 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fabbri M, Soccio M, Costa M, Lotti N, Gazzano M, Siracusa V, Gamberini R, Rimini B, Munari A, García-Fernández L, Vázquez-Lasa B, San Román J (2016) New fully bio-based PLLA triblock copoly(ester urethane)s as potential candidates for soft tissue engineering. Polym Degrad Stab 132(Supplement C):169–180.  https://doi.org/10.1016/j.polymdegradstab.2016.02.024 CrossRefGoogle Scholar
  11. 11.
    Rojo L, Radley-Searle S, Fernandez-Gutierrez M, Rodriguez-Lorenzo LM, Abradelo C, Deb S, Roman JS (2015) The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity. J Mater Chem B 3(13):2708–2713.  https://doi.org/10.1039/c4tb01969e CrossRefGoogle Scholar
  12. 12.
    Del Campo MM, Alvarado-Estrada K, Rojo L, Sampedro JG, Rosales-Ibáñez R, Román JS (2015) Effect and application of 3D-Scaffolds in restoration of bone defects. Dent Mater 31(Supplement 1):e65.  https://doi.org/10.1016/j.dental.2015.08.142 CrossRefGoogle Scholar
  13. 13.
    Suarez P, Rojo L, Gonzalez-Gomez A, San Roman J (2013) Self-assembling gradient copolymers of vinylimidazol and (acrylic)ibuprofen with anti-inflammatory and zinc chelating properties. Macromol Biosci 13(9):1174–1184.  https://doi.org/10.1002/mabi.201300141 CrossRefPubMedGoogle Scholar
  14. 14.
    Velasco D, Réthoré G, Newland B, Parra J, Elvira C, Pandit A, Rojo L, San Román J (2012) Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. Eur J Pharm Biopharm 82(3):465–474.  https://doi.org/10.1016/j.ejpb.2012.08.002 CrossRefPubMedGoogle Scholar
  15. 15.
    Rojo L, Fernandez-Gutierrez M, Deb S, Stevens MM, San Roman J (2015) Designing dapsone polymer conjugates for controlled drug delivery. Acta Biomater 27:32–41.  https://doi.org/10.1016/j.actbio.2015.08.047 CrossRefPubMedGoogle Scholar
  16. 16.
    Ndlovu M, Bedson J, Jones PW, Jordan KP (2014) Pain medication management of musculoskeletal conditions at first presentation in primary care: analysis of routinely collected medical record data. BMC Musculoskelet Disord 15:418.  https://doi.org/10.1186/1471-2474-15-418 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chang D, Lamothe M, Stevens R, Sigal L (1996) Dapsone in rheumatoid arthritis. Semin Arthritis Rheum 25(6):390–403CrossRefPubMedGoogle Scholar
  18. 18.
    Sakata R, Iwakura T, Reddi AH (2015) Regeneration of articular cartilage surface: morphogens, cells, and extracellular matrix scaffolds. Tissue Eng Part B Rev 21(5):461–473.  https://doi.org/10.1089/ten.TEB.2014.0661 CrossRefPubMedGoogle Scholar
  19. 19.
    Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, Cho CS (2011) Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 36(2):238–268.  https://doi.org/10.1016/j.progpolymsci.2010.10.001 CrossRefGoogle Scholar
  20. 20.
    Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864.  https://doi.org/10.1002/polb.22259 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B (2015) Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 23(12):3729–3735.  https://doi.org/10.1007/s00167-014-3295-8 CrossRefPubMedGoogle Scholar
  22. 22.
    Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A (2012) Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym 89(3):723–739.  https://doi.org/10.1016/j.carbpol.2012.04.057 CrossRefPubMedGoogle Scholar
  23. 23.
    Mora-Boza A, Puertas-Bartolomé M, Vázquez-Lasa B, San Román J, Pérez-Caballer A, Olmeda-Lozano M (2017) Contribution of bioactive hyaluronic acid and gelatin to regenerative medicine. Methodologies of gels preparation and advanced applications. Eur Polym J 95(Supplement C):11–26.  https://doi.org/10.1016/j.eurpolymj.2017.07.039 CrossRefGoogle Scholar
  24. 24.
    Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, Dai L, Zhang J, Fu X, Duan X, Zhou C, Ao Y (2016) Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 108(Supplement C):157–167.  https://doi.org/10.1016/j.biomaterials.2016.09.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Park H, Lee HJ, An H, Lee KY (2017) Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr Polym 162(Supplement C):100–107.  https://doi.org/10.1016/j.carbpol.2017.01.045 CrossRefPubMedGoogle Scholar
  26. 26.
    Place ES, Rojo L, Gentleman E, Sardinha JP, Stevens MM (2011) Strontium- and zinc-alginate hydrogels for bone tissue engineering. Tissue Eng Part A 17(21–22):2713–2722.  https://doi.org/10.1089/ten.tea.2011.0059 CrossRefPubMedGoogle Scholar
  27. 27.
    Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C 70(Part 1):101–111.  https://doi.org/10.1016/j.msec.2016.08.027 CrossRefGoogle Scholar
  28. 28.
    Peniche H, Reyes-Ortega F, Aguilar MR, Rodriguez G, Abradelo C, Garcia-Fernandez L, Peniche C, San Roman J (2013) Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles. Macromol Biosci 13(11):1556–1567.  https://doi.org/10.1002/mabi.201300184 CrossRefPubMedGoogle Scholar
  29. 29.
    Chang N-J, Lin C-C, Shie M-Y, Yeh M-L, Li C-F, Liang P-I, Lee K-W, Shen P-H, Chu C-J (2015) Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 28(Supplement C):128–137.  https://doi.org/10.1016/j.actbio.2015.09.026 CrossRefPubMedGoogle Scholar
  30. 30.
    Rojo L, Vazquez B, San Roman J (2014) Synthetic polymers for tissue engineering scaffolds: biological design, materials, and fabrication. In: Migliaresi C, Motta A (eds) Scaffolds for tissue engineering: biological design, materials and fabrication. Pan Stanford Publishing, Singapore, pp 263–300CrossRefGoogle Scholar
  31. 31.
    Wang J, Zhang F, Tsang WP, Wan C, Wu C (2017) Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials 120(Supplement C):11–21.  https://doi.org/10.1016/j.biomaterials.2016.12.015 CrossRefPubMedGoogle Scholar
  32. 32.
    Radhakrishnan J, Subramanian A, Sethuraman S (2017) Injectable glycosaminoglycan–protein nano-complex in semi-interpenetrating networks: a biphasic hydrogel for hyaline cartilage regeneration. Carbohydr Polym 175(Supplement C):63–74.  https://doi.org/10.1016/j.carbpol.2017.07.063 CrossRefPubMedGoogle Scholar
  33. 33.
    Moeinzadeh S, Pajoum Shariati SR, Jabbari E (2016) Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials 92:57–70.  https://doi.org/10.1016/j.biomaterials.2016.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46(Supplement C):1–24.  https://doi.org/10.1016/j.progpolymsci.2014.12.001 CrossRefGoogle Scholar
  35. 35.
    Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 62(Supplement C):29–41.  https://doi.org/10.1016/j.actbio.2017.08.033 CrossRefPubMedGoogle Scholar
  36. 36.
    Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56(Supplement C):3–13.  https://doi.org/10.1016/j.actbio.2017.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lopez-Ruiz E, Jimenez G, Garcia MA, Antich C, Boulaiz H, Marchal JA, Peran M (2016) Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what’s new? Expert Opin Ther Pat 26(8):877–890.  https://doi.org/10.1080/13543776.2016.1203903 CrossRefPubMedGoogle Scholar
  38. 38.
    Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11(4):213–222.  https://doi.org/10.1038/nrrheum.2015.27 CrossRefPubMedGoogle Scholar
  39. 39.
    Moreira Teixeira LS, Patterson J, Luyten FP (2014) Skeletal tissue regeneration: where can hydrogels play a role? Int Orthop 38(9):1861–1876.  https://doi.org/10.1007/s00264-014-2402-2 CrossRefPubMedGoogle Scholar
  40. 40.
    Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57(Supplement C):1–25.  https://doi.org/10.1016/j.actbio.2017.01.036 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lam J, Lu S, Kasper FK, Mikos AG (2015) Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev 84(Supplement C):123–134.  https://doi.org/10.1016/j.addr.2014.06.006 CrossRefPubMedGoogle Scholar
  42. 42.
    Rojo L, Deb S (2015) Polymer therapeutics in relation to dentistry. Biomaterials for oral and craniomaxillofacial applications. Front Oral Biol 17:13–21.  https://doi.org/10.1159/000381688 CrossRefPubMedGoogle Scholar
  43. 43.
    Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Pawde AM, Kumar GS, Sharma GT (2017) Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother 93(Supplement C):1165–1174.  https://doi.org/10.1016/j.biopha.2017.07.032 CrossRefPubMedGoogle Scholar
  44. 44.
    Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, Wang Y, Tang Z, Lv Y, Yang L (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52(Supplement C):463–475.  https://doi.org/10.1016/j.biomaterials.2015.01.001 CrossRefPubMedGoogle Scholar
  45. 45.
    Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den JJJP B, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2014) Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35(31):8829–8839.  https://doi.org/10.1016/j.biomaterials.2014.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim DK, Kim JI, Sim BR, Khang G (2017) Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C 78(Supplement C):571–578.  https://doi.org/10.1016/j.msec.2017.02.067 CrossRefGoogle Scholar
  47. 47.
    Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang W, Zhu S, Jiang Y, Shen W, Zhang S, Ouyang HW (2017) Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater 63:64–75.  https://doi.org/10.1016/j.actbio.2017.09.005 CrossRefPubMedGoogle Scholar
  48. 48.
    Chen P, Tao J, Zhu S, Cai Y, Mao Q, Yu D, Dai J, Ouyang H (2015) Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials 39(Supplement C):114–123.  https://doi.org/10.1016/j.biomaterials.2014.10.049 CrossRefPubMedGoogle Scholar
  49. 49.
    Frohbergh ME, Guevara JM, Grelsamer RP, Barbe MF, He X, Simonaro CM, Schuchman EH (2016) Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthr Cartil 24(4):752–762.  https://doi.org/10.1016/j.joca.2015.10.016 CrossRefPubMedGoogle Scholar
  50. 50.
    Hung K-C, Tseng C-S, Dai L-G, Hsu S-h (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83(Supplement C):156–168.  https://doi.org/10.1016/j.biomaterials.2016.01.019 CrossRefPubMedGoogle Scholar
  51. 51.
    Wang C, Hou W, Guo X, Li J, Hu T, Qiu M, Liu S, Mo X, Liu X (2017) Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng C 79(Supplement C):507–515.  https://doi.org/10.1016/j.msec.2017.05.075 CrossRefGoogle Scholar
  52. 52.
    Fereshteh Z, Fathi M, Bagri A, Boccaccini AR (2016) Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater Sci Eng C 68(Supplement C):613–622.  https://doi.org/10.1016/j.msec.2016.06.009 CrossRefGoogle Scholar
  53. 53.
    del Mercato LL, Passione LG, Izzo D, Rinaldi R, Sannino A, Gervaso F (2016) Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J Mech Behav Biomed Mater 62(Supplement C):209–221.  https://doi.org/10.1016/j.jmbbm.2016.05.009 CrossRefPubMedGoogle Scholar
  54. 54.
    Lee Y-H, Wu H-C, Yeh C-W, Kuan C-H, Liao H-T, Hsu H-C, Tsai J-C, Sun J-S, Wang T-W (2017) Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater 63:210–226.  https://doi.org/10.1016/j.actbio.2017.09.008 CrossRefPubMedGoogle Scholar
  55. 55.
    Wang W, Sun L, Zhang P, Song J, Liu W (2014) An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater 10(12):4983–4995.  https://doi.org/10.1016/j.actbio.2014.08.022 CrossRefPubMedGoogle Scholar
  56. 56.
    Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM, Lu S, Kasper FK, Mikos AG (2014) Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater 10(10):4103–4112.  https://doi.org/10.1016/j.actbio.2014.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Karimi T, Moeinzadeh S, Jabbari E (2015) 3-Growth factors for musculoskeletal tissue engineering. In: Nukavarapu SP, Freeman JW, Laurencin CT (eds) Regenerative engineering of musculoskeletal tissues and interfaces. Woodhead Publishing, Amsterdam, pp 43–76.  https://doi.org/10.1016/B978-1-78242-301-0.00003-3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencia y Tecnología de Polímeros CSICMadridSpain
  2. 2.Consorcio CIBER-BBN, Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations