Hemophilia B

  • Hoda Motlagh
  • Behnaz Pezeshkpoor
  • Akbar Dorgalaleh


Hemophilia B or Christmas disease is an X-linked recessive bleeding disorder with a prevalence of ~1 in 30,000 males worldwide that is clearly less common than hemophilia A. Patients with hemophilia B suffer from recurrent joint bleeds, ecchymosis, epistaxis, and post-dental extraction bleeding. Nevertheless women who are carriers of this abnormality are asymptomatic. Timely diagnosis of disorder is made based on family history, clinical manifestations, and appropriate laboratory studies. Replacement therapies with intravenous injection of plasma-derived factor IX (FIX) and recombinant FIX (rFIX) are current therapeutic choices that have significantly improved life expectancy and quality of life in these patients; but inhibitor formation occurring in ~1% of patients remains as a challenge of replacement therapy that can cause infused FIX concentrate to be less efficient. Gene therapy is the only definitive curative option, but some time will pass before it becomes available as a routine treatment choice.


Hemophilia B Factor IX deficiency Factor IX Christmas disease Gene therapy 



We appreciate Professor Edward Tuddenham for his valuable comments that significantly improved the quality of this chapter.


  1. 1.
    Horava SD, Peppas NA. Recent advances in hemophilia B therapy. Drug Deliv Transl Res. 2017;7:359–71.CrossRefPubMedGoogle Scholar
  2. 2.
    DeLoughery TG. Basics of coagulation. In: Hemostasis and thrombosis. Cham: Springer; 2015. p. 1–7.Google Scholar
  3. 3.
    Wang Q-Y, et al. A genetic analysis of 23 Chinese patients with hemophilia B. Sci Rep. 2016;6:25024.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eby CS. Bleeding and vitamin K deficiency. In: Management of bleeding patients. Cham: Springer; 2016. p. 145–50.CrossRefGoogle Scholar
  5. 5.
    Dorgalaleh A, Dadashizadeh G, Bamedi T. Hemophilia in Iran. Hematology. 2016;21(5):300–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Berntorp E, Shapiro AD. Modern haemophilia care. Lancet. 2012;379(9824):1447–56.CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshitake S, et al. Complete nucleotide sequences of the gene for human factor IX (antihemophilic factor B). Biochemistry. 1985;24(14):3736–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee C, Berntorp E, Hoots K. Textbook of hemophilia. Chichester, West Sussex, UK. Hoboken, NJ: Wiley-Blackwell; 2010.CrossRefGoogle Scholar
  9. 9.
    Schmidt AE, Bajaj SP. Structure–function relationships in factor IX and factor IXa. Trends Cardiovasc Med. 2003;13(1):39–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Rallapalli P, et al. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. J Thromb Haemost. 2013;11(7):1329–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Ngo JCK, et al. Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure. 2008;16(4):597–606.CrossRefPubMedGoogle Scholar
  12. 12.
    Autin L, et al. Molecular models of the procoagulant factor VIIIa–factor IXa complex. J Thromb Haemost. 2005;3(9):2044–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Li T, et al. The CDC Hemophilia B mutation project mutation list: a new online resource. Mol Genet Genomic Med. 2013;1(4):238–45.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li T, et al. Mutation analysis of a cohort of US patients with hemophilia B. Am J Hematol. 2014;89(4):375–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mannucci P, Franchini M. Is haemophilia B less severe than haemophilia A? Haemophilia. 2013;19(4):499–502.CrossRefPubMedGoogle Scholar
  16. 16.
    Jedidi I, et al. Acquired haemophilia B: a case report and literature review. Ann Biol Clin. 2011;69:685–8.Google Scholar
  17. 17.
    Franchini M, Mannucci PM. Inhibitors of propagation of coagulation (factors VIII, IX and XI): a review of current therapeutic practice. Br J Clin Pharmacol. 2011;72(4):553–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Crossley M, et al. Recovery from hemophilia B Leyden: an androgen-responsive element in the factor IX promoter. Science. 1992;257(5068):377–9.CrossRefPubMedGoogle Scholar
  19. 19.
    DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol. 2007;138(3):305–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Ulrich S, et al. Congenital hypersensitivity to vitamin K antagonists due to FIX propeptide mutation at locus-10: a (not so) rare cause of bleeding under oral anticoagulant therapy in Switzerland. Swiss Med Wkly. 2008;138(7–8):100–7.PubMedGoogle Scholar
  21. 21.
    Chu K, et al. A mutation in the propeptide of Factor IX leads to warfarin sensitivity by a novel mechanism. J Clin Investig. 1996;98(7):1619.CrossRefPubMedGoogle Scholar
  22. 22.
    Oldenburg J, et al. Missense mutations at ALA-10 in the factor IX propeptide: an insignificant variant in normal life but a decisive cause of bleeding during oral anticoagulant therapy. Br J Haematol. 1997;98(1):240–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Surin V, et al. Mutational analysis of hemophilia B in Russia: molecular-genetic study. Russ J Genet. 2016;52(4):409–15.CrossRefGoogle Scholar
  24. 24.
    Kitchen S, McCraw A, Echenagucia M. Diagnosis of hemophilia and other bleeding disorders. A laboratory manual. Montreal: World Federation of Hemophilia; 2000.Google Scholar
  25. 25.
    Kihlberg K, et al. Discrepancies between the one-stage clotting assay and the chromogenic assay in haemophilia B. Haemophilia. 2017;23(4):620–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Kitchen S, Signer-Romero K, Key N. Current laboratory practices in the diagnosis and management of haemophilia: a global assessment. Haemophilia. 2015;21(4):550–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Sellner LN, Taylor GR. MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat. 2004;23(5):413–9.CrossRefPubMedGoogle Scholar
  28. 28.
    KWON MJ, et al. Identification of mutations in the F9 gene including exon deletion by multiplex ligation-dependent probe amplification in 33 unrelated Korean patients with haemophilia B. Haemophilia. 2008;14(5):1069–75.CrossRefPubMedGoogle Scholar
  29. 29.
    Bolton-Maggs PH, Pasi KJ. Haemophilias a and b. Lancet. 2003;361(9371):1801–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Franchini M, et al. Treatment of hemophilia B: focus on recombinant factor IX. Biol Targets Ther. 2013;7:33.CrossRefGoogle Scholar
  31. 31.
    Elm T, Oestergaard H, Tranholm M. Dose response and prolonged effect of 40K PEG-FIX on bleeding in hemophilia B mice. J Thromb Haemost. 2009;7:134.Google Scholar
  32. 32.
    Carcao M, et al. Insight into health-related quality of life of young children with haemophilia B treated with long-acting nonacog beta pegol recombinant factor IX. Haemophilia. 2017;23(3):e222–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Metzner HJ, et al. Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost. 2009;102(4):634–44.PubMedGoogle Scholar
  34. 34.
    Brown DL. Congenital bleeding disorders. Curr Probl Pediatr Adolesc Health Care. 2005;35(2):38–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Nummi V, Jouppila A, Lassila R. Monitoring once-weekly recombinant factor IX prophylaxis in hemophilia B with thrombin generation assay and factor IX activity. Int J Lab Hematol. 2017;39:359–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Dolan G, et al. Haemophilia B: Where are we now and what does the future hold? Blood Rev. 2017;32:52–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Key NS. Inhibitors in congenital coagulation disorders. Br J Haematol. 2004;127(4):379–91.CrossRefGoogle Scholar
  38. 38.
    White G, et al. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 2001;85(3):560.CrossRefPubMedGoogle Scholar
  39. 39.
    Nathwani AC, et al. Adenovirus-associated virus vector–mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nienhuis AW, Nathwani AC, Davidoff AM. Gene therapy for hemophilia. Mol Ther. 2017;25:1163–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nathwani AC, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;2014(371):1994–2004.CrossRefGoogle Scholar
  42. 42.
    Park C-Y, et al. Genome-editing technologies for gene correction of hemophilia. Hum Genet. 2016;135(9):977–81.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kay MA, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24(3):257.CrossRefPubMedGoogle Scholar
  44. 44.
    Herzog RW, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med. 1999;5(1):56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hoda Motlagh
    • 1
  • Behnaz Pezeshkpoor
    • 2
  • Akbar Dorgalaleh
    • 1
  1. 1.Department of Hematology and Blood TransfusionSchool of Allied Medicine, Iran University of Medical SciencesTehranIran
  2. 2.Institute of Experimental Hematology and Transfusion Medicine, University of BonnBonnGermany

Personalised recommendations