Advertisement

Congenital Bleeding Disorders

  • Akbar Dorgalaleh
  • Fariba Rad
Chapter

Abstract

Congenital bleeding disorders (CBD) are heterogeneous group of disorders with variable clinical presentations ranging from asymptomatic condition, mostly in inherited platelet function disorders (IPFD), to severe life-threatening disorders, notably in factor (F) XIII deficiency. Most of these disorders including rare bleeding disorders (RBD) and IPFD are autosomal recessive disorders, while patients with hemophilia A and B had X-linked recessive manner of inheritance with a considerable percent of de novo mutations. The incidence of disorders is highly variable and can be as common as ~1% for von Willebrand disease (VWD) to 1 per 2 million for FXIII and FII deficiencies. Diagnosis of some CDB, such as Glanzmann thrombasthenia (GT), is straightforward, while others such as VWD and congenital fibrinogen disorders have more sophisticated diagnostic process. Most of CBD, notably IPFD, are mild bleeding disorders that never require medical intervention. The main therapeutic choice in most CBD is on-demand therapy, while in others, such as hemophilia A and B and FXIII deficiency, primary prophylaxis is the recommended treatment option. With timely diagnosis and appropriate management of CBD, the burden of disorders can be alleviated or significantly decreased.

Keywords

Congenital bleeding disorder Hemorrhagic Inherited platelet function disorders Hemophilia Rare bleeding disorder 

References

  1. 1.
    Rick ME, Walsh CE, Key NS. Congenital bleeding disorders. ASH Education Program Book. 2003;2003(1):559–74.Google Scholar
  2. 2.
    Brown DL. Congenital bleeding disorders. Curr Probl Pediatr Adolesc Health Care. 2005;35(2):38–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Sadler J, Budde U, Eikenboom J, Favaloro E, Hill F, Holmberg L, et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost. 2006;4(10):2103–14.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dorgalaleh A, Tabibian S, Hosseini S, Shamsizadeh M. Guidelines for laboratory diagnosis of factor XIII deficiency. Blood Coagul Fibrinolysis. 2016;27(4):361–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Alavi SER, Jalalvand M, Assadollahi V, Tabibian S, Dorgalaleh A. Intracranial hemorrhage: a devastating outcome of congenital bleeding disorders—prevalence, diagnosis, and management, with a special focus on congenital factor XIII deficiency. Semin Thromb Hemost. 2017.  https://doi.org/10.1055/s-0037-1604109.
  6. 6.
    Dorgalaleh A, Tabibian S, Shamsizadeh M. Inherited platelet function disorders (IPFDs). Clin Lab. 2017;63(1):1–13.Google Scholar
  7. 7.
    Gresele P. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost. 2015;13(2):314–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Naderi M, Dorgalaleh A, Alizadeh S, Tabibian S, Hosseini S, Shamsizadeh M, et al. Clinical manifestations and management of life-threatening bleeding in the largest group of patients with severe factor XIII deficiency. Int J Hematol. 2014;100(5):443–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood. 2015;125:2052–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Biss T, Blanchette V, Clark D, Wakefield C, James P, Rand M. Use of a quantitative pediatric bleeding questionnaire to assess mucocutaneous bleeding symptoms in children with a platelet function disorder. J Thromb Haemost. 2010;8(6):1416–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Lowe GC, Lordkipanidzé M, Watson SP. Utility of the ISTH bleeding assessment tool in predicting platelet defects in participants with suspected inherited platelet function disorders. J Thromb Haemost. 2013;11(9):1663–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Toygar HU, Guzeldemir E. Excessive gingival bleeding in two patients with Glanzmann thrombasthenia. J Periodontol. 2007;78(6):1154–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Poon M-C, Di Minno G, d’Oiron R, Zotz R. New insights into the treatment of Glanzmann thrombasthenia. Transfus Med Rev. 2016;30(2):92–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Santagostino E, Mancuso M, Tripodi A, Chantarangkul V, Clerici M, Garagiola I, et al. Severe hemophilia with mild bleeding phenotype: molecular characterization and global coagulation profile. J Thromb Haemost. 2010;8(4):737–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Stieltjes N, Calvez T, Demiguel V, Torchet M, Briquel M, Fressinaud E, et al. Intracranial haemorrhages in French haemophilia patients (1991–2001): clinical presentation, management and prognosis factors for death. Haemophilia. 2005;11(5):452–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Den Uijl I, Fischer K, Van Der Bom J, Grobbee D, Rosendaal F, Plug I. Clinical outcome of moderate haemophilia compared with severe and mild haemophilia. Haemophilia. 2009;15(1):83–90.CrossRefGoogle Scholar
  17. 17.
    Van den Berg H, de Groot P, Fischer K. Phenotypic heterogeneity in severe hemophilia. J Thromb Haemost. 2007;5(s1):151–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Peyvandi F, Palla R, Menegatti M, Siboni S, Halimeh S, Faeser B, et al. Coagulation factor activity and clinical bleeding severity in rare bleeding disorders: results from the European Network of Rare Bleeding Disorders. J Thromb Haemost. 2012;10(4):615–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Dorgalaleh A, Alavi SER, Tabibian S, Soori S, Moradi EH, Bamedi T, et al. Diagnosis, clinical manifestations and management of rare bleeding disorders in Iran. Hematology. 2017;22(4):224–30.CrossRefPubMedGoogle Scholar
  20. 20.
    De Moerloose P, Neerman-Arbez M. Congenital fibrinogen disorders. Semin Thromb Hemost. 2009;35:356–66.CrossRefPubMedGoogle Scholar
  21. 21.
    De Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost. 2013;39:585–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Inbal A, Muszbek L. Coagulation factor deficiencies and pregnancy loss. Semin Thromb Hemost. 2003;29:171–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Anwar R, Miloszewski KJ. Factor XIII deficiency. Br J Haematol. 1999;107(3):468–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Coopland A, Alkjaersig N, Fletcher AP. Reduction in plasma factor XIII (fibrin stabilizing factor) concentration during pregnancy. J Lab Clin Med. 1969;73(1):144–53.PubMedGoogle Scholar
  25. 25.
    Padmanabhan L, Mhaskar R, Mhaskar A, Ross C. Factor XIII deficiency: a rare cause of repeated abortions. Singap Med J. 2004;45(4):186–7.Google Scholar
  26. 26.
    Dorgalaleh A, Naderi M, Shamsizadeh M. Morbidity and mortality in a large number of Iranian patients with severe congenital factor XIII deficiency. Ann Hematol. 2016;95(3):451–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Mosesson MW. Dysfibrinogenemia and thrombosis. Semin Thromb Hemost. 1999;25:311–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Girolami A, Ferrari S, Cosi E, Girolami B, Lombardi AM. Congenital prothrombin defects: they are not only associated with bleeding but also with thrombosis: a new classification is needed. Hematology. 2018;23(2):105–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Cramer TJ, Anderson K, Navaz K, Brown JM, Mosnier LO, von Drygalski A. Heterozygous congenital Factor VII deficiency with the 9729del4 mutation, associated with severe spontaneous intracranial bleeding in an adolescent male. Blood Cell Mol Dis. 2016;57:8–12.CrossRefGoogle Scholar
  30. 30.
    Girolami A, Cosi E, Ferrari S, Girolami B, Lombardi AM. Bleeding manifestations in heterozygotes with congenital FVII deficiency: a comparison with unaffected family members during a long observation period. Hematology. 2017;22(6):375–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Dorgalaleh A, Rashidpanah J. Blood coagulation factor XIII and factor XIII deficiency. Blood Rev. 2016;30(6):461–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Federici AB, Bucciarelli P, Castaman G, Mazzucconi MG, Morfini M, Rocino A, et al. The bleeding score predicts clinical outcomes and replacement therapy in adults with von Willebrand disease. Blood. 2014;123(26):4037–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Makris M. Gastrointestinal bleeding in von Willebrand disease. Thromb Res. 2006;118:S13–S7.CrossRefPubMedGoogle Scholar
  34. 34.
    Neerman-Arbez M, Johnson K, Morris MA, McVey J, Peyvandi F, Nichols W, et al. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V-factor VIII deficiency. Blood. 1999;93(7):2253–60.PubMedGoogle Scholar
  35. 35.
    Zhang B, McGee B, Yamaoka JS, Guglielmone H, Downes KA, Minoldo S, et al. Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood. 2006;107(5):1903–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brenner B, Sánchez-Vega B, Wu S-M, Lanir N, Stafford DW, Solera J. A missense mutation in γ-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors. Blood. 1998;92(12):4554–9.PubMedGoogle Scholar
  37. 37.
    Oldenburg J, Von Brederlow B, Fregin A, Rost S, Wolz W, Eberl W, et al. Congenital deficiency of vitamin K-dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thromb Haemost-stuttgart. 2000;84(6):937–41.Google Scholar
  38. 38.
    Dorgalaleh A, Dadashizadeh G, Bamedi T. Hemophilia in Iran. Hematology. 2016;21(5):300–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Bagnall RD, Waseem N, Green PM, Giannelli F. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood. 2002;99(1):168–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Jenkins P, Collins P, Goldman E, McCraw A, Riddell A, Lee C, et al. Analysis of intron 22 inversions of the factor VIII gene in severe hemophilia A: implications for genetic counseling. Blood. 1994;84(7):2197–201.PubMedGoogle Scholar
  41. 41.
    Antonarakis SE, Rossiter J, Young M, Horst J, De Moerloose P, Sommer S, et al. Factor VIII gene inversions in severe hemophilia A: results of an international consortium study. Blood. 1995;86(6):2206–12.PubMedGoogle Scholar
  42. 42.
    Asselta R, Duga S, Tenchini M. The molecular basis of quantitative fibrinogen disorders. J Thromb Haemost. 2006;4(10):2115–29.CrossRefPubMedGoogle Scholar
  43. 43.
    Dorgalaleh A, Tabibian S, Bamedi T, Tamaddon G, Naderi M, Varmaghani B, et al. Molecular genetic analysis of ten unrelated Iranian patients with congenital factor XIII deficiency. Int J Lab Hematol. 2016;39(2):e33–6CrossRefPubMedGoogle Scholar
  44. 44.
    Vu D, Neerman-Arbez M. Molecular mechanisms accounting for fibrinogen deficiency: from large deletions to intracellular retention of misfolded proteins. J Thromb Haemost. 2007;5(s1):125–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Neerman-Arbez M. The molecular basis of inherited afibrinogenaemia. Thromb Haemost. 2001;86(1):154–63.PubMedGoogle Scholar
  46. 46.
    Bellucci S, Caen J. Molecular basis of Glanzmann’s thrombasthenia and current strategies in treatment. Blood Rev. 2002;16(3):193–202.CrossRefPubMedGoogle Scholar
  47. 47.
    Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis. 2006;1(1):10.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Favaloro EJ. Von Willebrand disease: local diagnosis and management of a globally distributed bleeding disorder. Semin Thromb Hemost. 2011;37:440–55.CrossRefPubMedGoogle Scholar
  49. 49.
    Favaloro EJ. Diagnosis and classification of von Willebrand disease: a review of the differential utility of various functional von Willebrand factor assays. Blood Coagul Fibrinolysis. 2011;22(7):553–64.CrossRefPubMedGoogle Scholar
  50. 50.
    Martinez M, Graf L, Tsakiris DA. Congenital bleeding disorders. In: Marcucci C, Schoettker P, editors. Perioperative hemostasis. Berlin: Springer; 2015. p. 71–87.Google Scholar
  51. 51.
    Levinson B, Lehesjoki A, De La Chapelle A, Gitschier J. Molecular analysis of hemophilia A mutations in the Finnish population. Am J Hum Genet. 1990;46(1):53.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Vidaud M, Chabret C, Gazengel C, Grunebaum L, Cazenave J, Goossens MA. de novo intragenic deletion of the potential EGF domain of the factor IX gene in a family with severe hemophilia B. Blood. 1986;68(4):961–3.PubMedGoogle Scholar
  53. 53.
    Cattaneo M. Inherited platelet-based bleeding disorders. J Thromb Haemost. 2003;1(7):1628–36.CrossRefPubMedGoogle Scholar
  54. 54.
    Kern M, Blanchette V, Stain AM, Einarson TR, Feldman BM. Clinical and cost implications of target joints in Canadian boys with severe hemophilia A. J Pediatr. 2004;145(5):628–34.CrossRefPubMedGoogle Scholar
  55. 55.
    Manco-Johnson MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357(6):535–44.CrossRefPubMedGoogle Scholar
  56. 56.
    Castaman G, Goodeve A, Eikenboom J. Principles of care for the diagnosis and treatment of von Willebrand disease. Haematologica. 2013;98(5):667–74.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Castaman G, Rodeghiero F, Tosetto A, Cappelletti A, Baudo F, Eikenboom J, et al. Hemorrhagic symptoms and bleeding risk in obligatory carriers of type 3 von Willebrand disease: an international, multicenter study. J Thromb Haemost. 2006;4(10):2164–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Anwar R, Minford A, Gallivan L, Trinh CH, Markham AF. Delayed umbilical bleeding—a presenting feature for factor XIII deficiency: clinical features, genetics, and management. Pediatrics. 2002;109(2):e32.CrossRefPubMedGoogle Scholar
  59. 59.
    Angles-Cano E, Mathonnet F, Dreyfus M, Claeyssens S, de Mazancourt P. A case of afibrinogenemia associated with A-alpha chain gene compound heterozygosity (HUMFIBRA c.[4110delA]+[3200+ 1G> T]). Blood Coagul Fibrinolysis. 2007;18(1):73–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Lebreton A, Casini A. Diagnosis of congenital fibrinogen disorders. Ann Biol Clin. 2016;74:405–12.Google Scholar
  61. 61.
    Dorgalaleh A, Kazemi A, Zaker F, Shamsizadeh M, Rashidpanah J, Mollaei M. Laboratory diagnosis of factor XIII deficiency, routine coagulation tests with quantitative and qualitative methods. Clin Lab. 2016;62(4):491–8.PubMedGoogle Scholar
  62. 62.
    Awasthy N, Aggarwal K, Gupta H, Saluja S. Congenital hypofibrinogenemia. Indian Pediatr. 2004;41(2):185–6.PubMedGoogle Scholar
  63. 63.
    Kihlberg K, Strandberg K, Rosén S, Ljung R, Astermark J. Discrepancies between the one-stage clotting assay and the chromogenic assay in haemophilia B. Haemophilia. 2017;23(4):620–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Barrowcliffe T. Monitoring haemophilia severity and treatment: new or old laboratory tests? Haemophilia. 2004;10(s4):109–14.CrossRefPubMedGoogle Scholar
  65. 65.
    Castellone DD, Adcock DM. Factor VIII activity and inhibitor assays in the diagnosis and treatment of hemophilia A. Semin Thromb Hemost. 2017;43:320–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Verbruggen B, Meijer P, Novakova I, Van Heerde W. Diagnosis of factor VIII deficiency. Haemophilia. 2008;14(s3):76–82.CrossRefPubMedGoogle Scholar
  67. 67.
    Cattaneo M, Hayward C, Moffat K, Pugliano M, Liu Y, Michelson AD. Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: a report from the platelet physiology subcommittee of the SSC of the ISTH. J Thromb Haemost. 2009;7(6):1029.CrossRefPubMedGoogle Scholar
  68. 68.
    Cattaneo M, Cerletti C, Harrison P, Hayward C, Kenny D, Nugent D, et al. Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb Haemost. 2013;11(6):1183–9.CrossRefGoogle Scholar
  69. 69.
    Nair S, Ghosh K, Kulkarni B, Shetty S, Mohanty D. Glanzmann’s thrombasthenia: updated. Platelets. 2002;13(7):387–93.CrossRefPubMedGoogle Scholar
  70. 70.
    Favaloro EJ, Pasalic L, Curnow J. Laboratory tests used to help diagnose von Willebrand disease: an update. Pathology. 2016;48(4):303–18.CrossRefPubMedGoogle Scholar
  71. 71.
    Favaloro EJ, Soltani S, McDonald J, Grezchnik E, Easton L, Favaloro JW. Reassessment of ABO blood group, sex, and age on laboratory parameters used to diagnose von Willebrand disorder: potential influence on the diagnosis vs the potential association with risk of thrombosis. Am J Clin Pathol. 2005;124(6):910–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Royal S, Schramm W, Berntorp E, Giangrande P, Gringeri A, Ludlam C, et al. Quality-of-life differences between prophylactic and on-demand factor replacement therapy in European haemophilia patients. Haemophilia. 2002;8(1):44–50.CrossRefPubMedGoogle Scholar
  73. 73.
    Valentino L, Mamonov V, Hellmann A, Quon D, Chybicka A, Schroth P, et al. A randomized comparison of two prophylaxis regimens and a paired comparison of on-demand and prophylaxis treatments in hemophilia A management. J Thromb Haemost. 2012;10(3):359–67.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    De Moerloose P, Neerman-Arbez M. Treatment of congenital fibrinogen disorders. Expert Opin Biol Ther. 2008;8(7):979–92.CrossRefPubMedGoogle Scholar
  75. 75.
    Federici A, Castaman G, Mannucci P. Guidelines for the diagnosis and management of von Willebrand disease in Italy. Haemophilia. 2002;8(5):607–21.CrossRefPubMedGoogle Scholar
  76. 76.
    Mumford AD, Ackroyd S, Alikhan R, Bowles L, Chowdary P, Grainger J, et al. Guideline for the diagnosis and management of the rare coagulation disorders. Br J Haematol. 2014;167(3):304–26.CrossRefPubMedGoogle Scholar
  77. 77.
    Mannucci PM. Treatment of von Willebrand’s disease. N Engl J Med. 2004;351(7):683–94.CrossRefPubMedGoogle Scholar
  78. 78.
    Bertolini J, Goss N, Curling J. Production of plasma proteins for therapeutic use. Hoboken: Wiley; 2012.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Akbar Dorgalaleh
    • 1
  • Fariba Rad
    • 2
  1. 1.Department of Hematology and Blood TransfusionSchool of Allied Medicine, Iran University of Medical SciencesTehranIran
  2. 2.Cellular and Molecular Research Center, Yasuj University of Medical SciencesyasujIran

Personalised recommendations