Advertisement

Layered Scaffolds for Osteochondral Tissue Engineering

  • Diana Ribeiro Pereira
  • Rui L. Reis
  • J. Miguel Oliveira
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1058)

Abstract

Despite huge efforts, tissue engineers and orthopedic surgeons still face a great challenge to functionally repair osteochondral (OC) defects. Nevertheless, over the past decade great progress has been made to find suitables strategies towards OC regeneration. In the clinics, some osteochondral tissue engineering (OCTE) strategies have already been applied although with some incongruous outcomes as OC tissue is complex in its architecture and function. In this chapter, we have summarized current OCTE strategies that are focused on hierarchical scaffold design, mainly layered scaffolds. Most suitable candidates towards functional regeneration of OC tissues are envisaged from monophasic to layered scaffolds. Herein is documented a variety of strategies with their intrinsic properties for further application as bare scaffolds or in combination with biologics. Both in vitro and in vivo approaches have been thoroughly studied aiming at functional OC regeneration. The most noteworthy studies in OC regeneration developed within the past 5 years are herein documented as well as some current clinical trials.

Keywords

Osteochondral defects Hierarchical scaffolds Multilayered scaffolds Tissue integration Functional OC regeneration 

Notes

Acknowledgments

DR Pereira acknowledges the Foundation for Science and Technology (FCT), Portugal, for an individual grant (SFRH/BD/ 81356/2011). JM Oliveira also thanks the FCT for the funds provided under the program Investigator FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015). Thanks to Mr. Maciej Doczyk for his help with the graphic illustrations.

References

  1. 1.
    Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49.  https://doi.org/10.1038/nrrheum.2010.197 CrossRefPubMedGoogle Scholar
  2. 2.
    Athanasiou KA, Darling EM, Hu JC (2009) Articular cartilage tissue engineering. Syn Lect Tiss Eng 1(1):1–182.  https://doi.org/10.2200/S00212ED1V01Y200910TIS003 CrossRefGoogle Scholar
  3. 3.
    Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440CrossRefGoogle Scholar
  4. 4.
    Hunziker EB (2000) Articular cartilage repair: problems and perspectives. Biorheology 37(1–2):163–164PubMedGoogle Scholar
  5. 5.
    Pacifici M, Koyama E, Iwamoto M, Gentili C (2000) Development of articular cartilage: what do we know about it and how may it occur? Connect Tissue Res 41(3):175–184CrossRefGoogle Scholar
  6. 6.
    Moisio K, Eckstein F, Chmiel JS, Guermazi A, Prasad P, Almagor O, Song J, Dunlop D, Hudelmaier M, Kothari A, Sharma L (2009) Denuded subchondral bone and knee pain in persons with knee osteoarthritis. Arthritis Rheum 60(12):3703–3710.  https://doi.org/10.1002/art.25014 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460CrossRefGoogle Scholar
  8. 8.
    Blevins FT, Steadman JR, Rodrigo JJ, Silliman J (1998) Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 21(7):761–767; discussion 767–768PubMedGoogle Scholar
  9. 9.
    Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391(Suppl):S362–S369CrossRefGoogle Scholar
  10. 10.
    Caffey S, McPherson E, Moore B, Hedman T, Vangsness CT Jr (2005) Effects of radiofrequency energy on human articular cartilage: an analysis of 5 systems. Am J Sports Med 33(7):1035–1039.  https://doi.org/10.1177/0363546504271965 CrossRefPubMedGoogle Scholar
  11. 11.
    Spahn G, Kahl E, Muckley T, Hofmann GO, Klinger HM (2008) Arthroscopic knee chondroplasty using a bipolar radiofrequency-based device compared to mechanical shaver: results of a prospective, randomized, controlled study. Knee Surg Sports Traumatol Arthrosc 16(6):565–573.  https://doi.org/10.1007/s00167-008-0506-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Upmeier H, Bruggenjurgen B, Weiler A, Flamme C, Laprell H, Willich SN (2007) Follow-up costs up to 5 years after conventional treatments in patients with cartilage lesions of the knee. Knee Surg Sports Traumatol Arthrosc 15(3):249–257.  https://doi.org/10.1007/s00167-006-0182-y CrossRefPubMedGoogle Scholar
  13. 13.
    Laupattarakasem W, Laopaiboon M, Laupattarakasem P, Sumananont C (2008) Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst Rev 1:CD005118.  https://doi.org/10.1002/14651858.CD005118.pub2 CrossRefGoogle Scholar
  14. 14.
    Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64(3):460–466CrossRefGoogle Scholar
  15. 15.
    Falah M, Nierenberg G, Soudry M, Hayden M, Volpin G (2010) Treatment of articular cartilage lesions of the knee. Int Orthop 34(5):621–630.  https://doi.org/10.1007/s00264-010-0959-y CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vasiliadis HS, Wasiak J (2010) Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 10:CD003323.  https://doi.org/10.1002/14651858.CD003323.pub3 CrossRefGoogle Scholar
  17. 17.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889.  https://doi.org/10.1056/NEJM199410063311401 CrossRefPubMedGoogle Scholar
  18. 18.
    Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, da Silva MV, Monteiro A, Oliveira JM, Reis RL (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20(6):1136–1142.  https://doi.org/10.1007/s00167-012-1910-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M (2013) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 41(8):1786–1793.  https://doi.org/10.1177/0363546513490658 CrossRefPubMedGoogle Scholar
  20. 20.
    Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34.  https://doi.org/10.1038/nrrheum.2014.157 CrossRefPubMedGoogle Scholar
  21. 21.
    Dunkin BS, Lattermann C (2013) New and emerging techniques in cartilage repair: MACI. Oper Tech Sports Med 21(2):100–107.  https://doi.org/10.1053/j.otsm.2013.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ventura A, Memeo A, Borgo E, Terzaghi C, Legnani C, Albisetti W (2012) Repair of osteochondral lesions in the knee by chondrocyte implantation using the MACI® technique. Knee Surg Sports Traumatol Arthrosc 20(1):121–126.  https://doi.org/10.1007/s00167-011-1575-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Amini AR, Adams DJ, Laurencin CT, Nukavarapu SP (2012) Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng A 18(13–14):1376–1388.  https://doi.org/10.1089/ten.TEA.2011.0076 CrossRefGoogle Scholar
  24. 24.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721.  https://doi.org/10.1016/j.biotechadv.2012.11.004 CrossRefGoogle Scholar
  25. 25.
    Danisovic L, Varga I, Zamborsky R, Bohmer D (2012) The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med (Maywood) 237(1):10–17.  https://doi.org/10.1258/ebm.2011.011229 CrossRefGoogle Scholar
  26. 26.
    Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338(6109):917–921.  https://doi.org/10.1126/science.1222454 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW (2008) Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater 16:26–39CrossRefGoogle Scholar
  28. 28.
    Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36(11):2091–2099.  https://doi.org/10.1177/0363546508322131 CrossRefPubMedGoogle Scholar
  29. 29.
    van Bergen CJA, Zengerink M, Blankevoort L, van Sterkenburg MN, van Oldenrijk J, van Dijk CN (2010) Novel metallic implantation technique for osteochondral defects of the medial talar dome: a cadaver study. Acta Orthop 81(4):495–502.  https://doi.org/10.3109/17453674.2010.492764 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mardones RM, Reinholz GG, Fitzsimmons JS, Zobitz ME, An KN, Lewallen DG, Yaszemski MJ, O'Driscoll SW (2005) Development of a biologic prosthetic composite for cartilage repair. Tissue Eng 11(9–10):1368–1378.  https://doi.org/10.1089/ten.2005.11.1368 CrossRefPubMedGoogle Scholar
  31. 31.
    Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451.  https://doi.org/10.1146/annurev.med.52.1.443 CrossRefPubMedGoogle Scholar
  32. 32.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543.  https://doi.org/10.1016/S0142-9612(00)00121-6 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359.  https://doi.org/10.1016/j.addr.2007.03.016 CrossRefPubMedGoogle Scholar
  34. 34.
    Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW (2014) Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850.  https://doi.org/10.1177/2041731414541850 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233.  https://doi.org/10.1016/j.addr.2007.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cosson S, Otte EA, Hezaveh H, Cooper-White JJ (2015) Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 4(2):156–164.  https://doi.org/10.5966/sctm.2014-0203 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080.  https://doi.org/10.1016/j.biomaterials.2005.07.040 CrossRefPubMedGoogle Scholar
  38. 38.
    Kazemnejad S, Khanmohammadi M, Mobini S, Taghizadeh-Jahed M, Khanjani S, Arasteh S, Golshahi H, Torkaman G, Ravanbod R, Heidari-Vala H, Moshiri A, Tahmasebi MN, Akhondi MM (2016) Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model. Cell Tissue Res 364(3):559–572.  https://doi.org/10.1007/s00441-015-2355-9 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 8(5):827–837.  https://doi.org/10.1089/10763270260424187 CrossRefPubMedGoogle Scholar
  40. 40.
    Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT (2005) Regeneration of articular cartilage--evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage 13(9):798–807.  https://doi.org/10.1016/j.joca.2005.04.018 CrossRefPubMedGoogle Scholar
  41. 41.
    Getgood AM, Kew SJ, Brooks R, Aberman H, Simon T, Lynn AK, Rushton N (2012) Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model. Knee 19(4):422–430.  https://doi.org/10.1016/j.knee.2011.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Hartmann S, Schnettler R (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192.  https://doi.org/10.1016/j.jss.2012.11.036 CrossRefPubMedGoogle Scholar
  43. 43.
    Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805.  https://doi.org/10.1016/j.biomaterials.2011.03.041 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137.  https://doi.org/10.1016/j.biomaterials.2006.07.034 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Re'em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8(9):3283–3293.  https://doi.org/10.1016/j.actbio.2012.05.014 CrossRefPubMedGoogle Scholar
  46. 46.
    Reyes R, Delgado A, Sanchez E, Fernandez A, Hernandez A, Evora C (2014) Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFbeta1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med 8(7):521–533.  https://doi.org/10.1002/term.1549 CrossRefPubMedGoogle Scholar
  47. 47.
    Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241.  https://doi.org/10.1016/j.actbio.2014.10.021 CrossRefPubMedGoogle Scholar
  48. 48.
    Pereira DR, Canadas RF, Correia JS, Marques AP, Reis RL, Oliveira JM (2014) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260.  https://doi.org/10.4028/www.scientific.net/KEM.587.255 CrossRefGoogle Scholar
  49. 49.
    Mahmoudifar N, Doran PM (2013) Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Biotechnol Prog 29(1):176–185.  https://doi.org/10.1002/btpr.1663 CrossRefPubMedGoogle Scholar
  50. 50.
    Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA (2016) 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng 2(10):1732–1742.  https://doi.org/10.1021/acsbiomaterials.6b00196 CrossRefGoogle Scholar
  51. 51.
    Sidney LE, Heathman TRJ, Britchford ER, Abed A, Rahman CV, Buttery LDK (2015) Investigation of localized delivery of diclofenac sodium from poly(D,L-lactic acid-co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Eng A 21(1–2):362–373.  https://doi.org/10.1089/ten.tea.2014.0100 CrossRefGoogle Scholar
  52. 52.
    Koupaei N, Karkhaneh A (2016) Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering. Tissue Eng Regen Med 13(3):251–260.  https://doi.org/10.1007/s13770-016-9061-x CrossRefGoogle Scholar
  53. 53.
    Lv YM, Yu QS (2015) Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold. Bone Joint Res 4(4):56–64.  https://doi.org/10.1302/2046-3758.44.2000310 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri O-M, Schubert DW, Boccaccini AR (2014) Bioglass®/chitosan–polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J Biomed Mater Res A 102(12):4510–4518.  https://doi.org/10.1002/jbm.a.35125 CrossRefPubMedGoogle Scholar
  55. 55.
    Oh SH, Lee JH (2013) Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater (Bristol, England) 8(1):014101CrossRefGoogle Scholar
  56. 56.
    Perez RA, Won JE, Knowles JC, Kim HW (2013) Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 65(4):471–496.  https://doi.org/10.1016/j.addr.2012.03.009 CrossRefPubMedGoogle Scholar
  57. 57.
    Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI (2009) Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng A 15(9):2595–2604.  https://doi.org/10.1089/ten.TEA.2008.0511 CrossRefGoogle Scholar
  58. 58.
    Cui W, Wang Q, Chen G, Zhou S, Chang Q, Zuo Q, Ren K, Fan W (2011) Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng 111(4):493–500.  https://doi.org/10.1016/j.jbiosc.2010.11.023 CrossRefGoogle Scholar
  59. 59.
    Ho ST, Hutmacher DW, Ekaputra AK, Hitendra D, Hui JH (2010) The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng A 16(4):1123–1141.  https://doi.org/10.1089/ten.TEA.2009.0471 CrossRefGoogle Scholar
  60. 60.
    Pei M, He F, Boyce BM, Kish VL (2009) Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage 17(6):714–722.  https://doi.org/10.1016/j.joca.2008.11.017 CrossRefPubMedGoogle Scholar
  61. 61.
    Gupta V, Lyne DV, Barragan M, Berkland CJ, Detamore MS (2016) Microsphere-based scaffolds encapsulating Tricalcium phosphate and hydroxyapatite for bone regeneration. J Mater Sci Mater Med 27(7):121–121.  https://doi.org/10.1007/s10856-016-5734-1 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Singh M, Berkland C, Detamore MS (2008) Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng Part B Rev 14(4):341–366.  https://doi.org/10.1089/ten.teb.2008.0304 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anat Rec (Hoboken, NJ) 297(1):26–35.  https://doi.org/10.1002/ar.22795 CrossRefGoogle Scholar
  64. 64.
    Cheng HW, Luk KD, Cheung KM, Chan BP (2011) In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 32(6):1526–1535.  https://doi.org/10.1016/j.biomaterials.2010.10.021 CrossRefPubMedGoogle Scholar
  65. 65.
    Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21(24):2599–2606CrossRefGoogle Scholar
  66. 66.
    Jeon JE, Vaquette C, Theodoropoulos C, Klein TJ, Hutmacher DW (2014) Multiphasic construct studied in an ectopic osteochondral defect model. J R Soc Interface 11(95):20140184.  https://doi.org/10.1098/rsif.2014.0184 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Filardo G, Drobnic M, Perdisa F, Kon E, Hribernik M, Marcacci M (2014) Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion. Osteoarthritis Cartilage 22(4):557–565.  https://doi.org/10.1016/j.joca.2014.01.004 CrossRefPubMedGoogle Scholar
  68. 68.
    Yousefi AM, Hoque ME, Prasad RG, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 103(7):2460–2481.  https://doi.org/10.1002/jbm.a.35356 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25.  https://doi.org/10.1016/j.actbio.2017.01.036 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38(6):1259–1271.  https://doi.org/10.1177/0363546509346395 CrossRefPubMedGoogle Scholar
  71. 71.
    Deng T, Lv J, Pang J, Liu B, Ke J (2014) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med 8(7):546–556PubMedGoogle Scholar
  72. 72.
    Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, Zheng Z, Chen X, Wang Y (2011) In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7(11):3999–4006CrossRefGoogle Scholar
  73. 73.
    Song K, Li L, Yan X, Zhang Y, Li R, Wang Y, Wang L, Wang H, Liu T (2016) Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold. J Mater Sci Mater Med 27(6):114CrossRefGoogle Scholar
  74. 74.
    Li X, Li Y, Zuo Y, Qu D, Liu Y, Chen T, Jiang N, Li H, Li J (2015) Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect. J Biomed Mater Res A 103(10):3226–3236CrossRefGoogle Scholar
  75. 75.
    Wang Y, Meng H, Yuan X, Peng J, Guo Q, Lu S, Wang A (2014) Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering. Biomed Eng Online 13:80CrossRefGoogle Scholar
  76. 76.
    Zhang T, Zhang H, Zhang L, Jia S, Liu J, Xiong Z, Sun W (2017) Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Biofabrication 9(2):025021CrossRefGoogle Scholar
  77. 77.
    Liao J, Tian T, Shi S, Xie X, Ma Q, Li G, Lin Y (2017) The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res 5:17018CrossRefGoogle Scholar
  78. 78.
    Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2(6):872–883CrossRefGoogle Scholar
  79. 79.
    Da H, Jia SJ, Meng GL, Cheng JH, Zhou W, Xiong Z, Mu YJ, Liu J (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One 8(1):e54838CrossRefGoogle Scholar
  80. 80.
    Park JY, Choi JC, Shim JH, Lee JS, Park H, Kim SW, Doh J, Cho DW (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3):035004CrossRefGoogle Scholar
  81. 81.
    Lam J, Lu S, Lee EJ, Trachtenberg JE, Meretoja VV, Dahlin RL, van den Beucken JJ, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2014) Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis Cartilage 22(9):1291–1300CrossRefGoogle Scholar
  82. 82.
    Lam J, Lu S, Meretoja VV, Tabata Y, Mikos AG, Kasper FK (2014) Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomater 10(3):1112–1123CrossRefGoogle Scholar
  83. 83.
    Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70(Pt 1):101–111CrossRefGoogle Scholar
  84. 84.
    Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196CrossRefGoogle Scholar
  85. 85.
    Liu X, Liu S, Liu S, Cui W (2014) Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. J Biomed Mater Res B Appl Biomater 102(7):1407–1414CrossRefGoogle Scholar
  86. 86.
    Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater 13(12):B511–B517CrossRefGoogle Scholar
  87. 87.
    Ding X, Zhu M, Xu B, Zhang J, Zhao Y, Ji S, Wang L, Wang L, Li X, Kong D, Ma X, Yang Q (2014) Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces 6(19):16696–16705CrossRefGoogle Scholar
  88. 88.
    Yucekul, A., D. Ozdil, N. H. Kutlu, E. Erdemli, H. M. Aydin and M. N. Doral (2017) Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep. J Tissue Eng 8:2041731417697500CrossRefGoogle Scholar
  89. 89.
    Levingstone TJ, Matsiko A, Dickson GR, O'Brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004CrossRefGoogle Scholar
  90. 90.
    Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O'Brien FJ (2016) Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater 32:149–160CrossRefGoogle Scholar
  91. 91.
    Amadori S, Torricelli P, Panzavolta S, Parrilli A, Fini M, Bigi A (2015) Multi-layered scaffolds for osteochondral tissue engineering: in vitro response of co-cultured human mesenchymal stem cells. Macromol Biosci 15(11):1535–1545CrossRefGoogle Scholar
  92. 92.
    Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190.  https://doi.org/10.1177/0363546510392711 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M (2014) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 42(1):158–165.  https://doi.org/10.1177/0363546513505434 CrossRefPubMedGoogle Scholar
  94. 94.
    St-Pierre JP, Gan L, Wang J, Pilliar RM, Grynpas MD, Kandel RA (2012) The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate. Acta Biomater 8(4):1603–1615.  https://doi.org/10.1016/j.actbio.2011.12.022 CrossRefPubMedGoogle Scholar
  95. 95.
    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855.  https://doi.org/10.1089/ten.tea.2011.0135 CrossRefPubMedGoogle Scholar
  96. 96.
    Phillips JE, Burns KL, Le Doux JM, Guldberg RE, García AJ (2008) Engineering graded tissue interfaces. Proc Natl Acad Sci U S A 105(34):12170–12175CrossRefGoogle Scholar
  97. 97.
    Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS (2010) Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater 6(1):137–143.  https://doi.org/10.1016/j.actbio.2009.07.042 CrossRefPubMedGoogle Scholar
  98. 98.
    Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9(7):2763–2768.  https://doi.org/10.1021/nl901582f CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Getgood A, Henson F, Skelton C, Herrera E, Brooks R, Fortier LA, Rushton N (2012) The augmentation of a collagen/glycosaminoglycan biphasic osteochondral scaffold with platelet-rich plasma and concentrated bone marrow aspirate for osteochondral defect repair in sheep: a pilot study. Cartilage 3(4):351–363.  https://doi.org/10.1177/1947603512444597 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jung MR, Shim IK, Chung HJ, Lee HR, Park YJ, Lee MC, Yang YI, Do SH, Lee SJ (2012) Local BMP-7 release from a PLGA scaffolding-matrix for the repair of osteochondral defects in rabbits. J Control Release 162(3):485–491.  https://doi.org/10.1016/j.jconrel.2012.07.040 CrossRefPubMedGoogle Scholar
  101. 101.
    Sakata R, Kokubu T, Nagura I, Toyokawa N, Inui A, Fujioka H, Kurosaka M (2012) Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold. J Orthop Res 30(2):252–259.  https://doi.org/10.1002/jor.21502 CrossRefPubMedGoogle Scholar
  102. 102.
    Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178.  https://doi.org/10.1016/j.jconrel.2013.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Algul D, Gokce A, Onal A, Servet E, Dogan Ekici AI, Yener FG (2016) In vitro release and in vivo biocompatibility studies of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. J Biomater Sci Polym Ed 27(5):431–440.  https://doi.org/10.1080/09205063.2016.1140501 CrossRefPubMedGoogle Scholar
  104. 104.
    Han F, Yang X, Zhao J, Zhao Y, Yuan X (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med 26(4):160.  https://doi.org/10.1007/s10856-015-5489-0 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, Zhou D, Kitajima T, Tanaka M, Ito Y, Ozaki T, Matsukawa A (2014) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457.  https://doi.org/10.1038/srep04457 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Moffat KL, Wang IN, Rodeo SA, Lu HH (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28(1):157–176.  https://doi.org/10.1016/j.csm.2008.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Efe T, Fuglein A, Heyse TJ, Stein T, Timmesfeld N, Fuchs-Winkelmann S, Schmitt J, Paletta JR, Schofer MD (2012) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc 20(2):210–215.  https://doi.org/10.1007/s00167-011-1571-4 CrossRefPubMedGoogle Scholar
  108. 108.
    Siparsky PN, Bailey JR, Dale KM, Klement MR, Taylor DC (2017) Open reduction internal fixation of isolated chondral fragments without osseous attachment in the knee: a case series. Orthop J Sports Med 5(3):232596711769628.  https://doi.org/10.1177/2325967117696281 CrossRefGoogle Scholar
  109. 109.
    Tampieri A, Landi E, Valentini F, Sandri M, D'Alessandro T, Dediu V, Marcacci M (2011) A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22(1):015104.  https://doi.org/10.1088/0957-4484/22/1/015104 CrossRefPubMedGoogle Scholar
  110. 110.
    van de Breevaart BJ, In der Maur CD, Bos PK, Feenstra L, Verhaar JAN, Weinans H, van Osch GJVM (2004) Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Ther 6(5):R469.  https://doi.org/10.1186/ar1216 CrossRefGoogle Scholar
  111. 111.
    Gilbert SJ, Singhrao SK, Khan IM, Gonzalez LG, Thomson BM, Burdon D, Duance VC, Archer CW (2009) Enhanced tissue integration during cartilage repair in vitro can be achieved by inhibiting chondrocyte death at the wound edge. Tissue Eng A 15(7):1739–1749.  https://doi.org/10.1089/ten.tea.2008.0361 CrossRefGoogle Scholar
  112. 112.
    Allon AA, Ng KW, Hammoud S, Russell BH, Jones CM, Rivera JJ, Schwartz J, Hook M, Maher SA (2012) Augmenting the articular cartilage-implant interface: functionalizing with a collagen adhesion protein. J Biomed Mater Res A 100(8):2168–2175.  https://doi.org/10.1002/jbm.a.34144 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Bhumiratana S, Eton RE, Oungoulian SR, Wan LQ, Ateshian GA, Vunjak-Novakovic G (2014) Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci U S A 111(19):6940–6945.  https://doi.org/10.1073/pnas.1324050111 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC (2013) Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 15:115–136.  https://doi.org/10.1146/annurev-bioeng-071812-152423 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, Gobbi A, Kita K, Horibe S, Shino K, Yoshikawa H, Nakamura N (2014) Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng A 20(17–18):2291–2304.  https://doi.org/10.1089/ten.tea.2013.0414 CrossRefGoogle Scholar
  116. 116.
    Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73.  https://doi.org/10.1089/ten.teb.2008.0388 CrossRefPubMedGoogle Scholar
  117. 117.
    Yan L-P, Oliveira JM, Oliveira AL, Reis RL (2015) Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng 1(4):183–200.  https://doi.org/10.1021/ab500038y CrossRefGoogle Scholar
  118. 118.
    Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11(4):213–222.  https://doi.org/10.1038/nrrheum.2015.27 CrossRefPubMedGoogle Scholar
  119. 119.
    Filardo G, Kon E, Perdisa F, Di Matteo B, Di Martino A, Iacono F, Zaffagnini S, Balboni F, Vaccari V, Marcacci M (2013) Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee 20(6):570–576.  https://doi.org/10.1016/j.knee.2013.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Kon E, Filardo G, Venieri G, Perdisa F, Marcacci M (2014) Tibial plateau lesions. Surface reconstruction with a biomimetic osteochondral scaffold: results at 2 years of follow-up. Injury 45(Suppl 6):S121–S125.  https://doi.org/10.1016/j.injury.2014.10.035 CrossRefPubMedGoogle Scholar
  121. 121.
    Berruto M, Delcogliano M, de Caro F, Carimati G, Uboldi F, Ferrua P, Ziveri G, De Biase CF (2014) Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med 42(7):1607–1617.  https://doi.org/10.1177/0363546514530292 CrossRefPubMedGoogle Scholar
  122. 122.
    Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 24(7):2380–2387.  https://doi.org/10.1007/s00167-015-3538-3 CrossRefPubMedGoogle Scholar
  123. 123.
    Dhollander AA, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2012) A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy 28(2):225–233.  https://doi.org/10.1016/j.arthro.2011.07.017 CrossRefPubMedGoogle Scholar
  124. 124.
    Bekkers JE, Bartels LW, Vincken KL, Dhert WJ, Creemers LB, Saris DB (2013) Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Am J Sports Med 41(6):1290–1295.  https://doi.org/10.1177/0363546513483536 CrossRefPubMedGoogle Scholar
  125. 125.
    Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6(1):12–19.  https://doi.org/10.1177/1947603514548890 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diana Ribeiro Pereira
    • 1
    • 2
  • Rui L. Reis
    • 1
    • 2
    • 3
  • J. Miguel Oliveira
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarcoPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBarcoPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of MinhoBarcoPortugal

Personalised recommendations