Advertisement

Commercial Products for Osteochondral Tissue Repair and Regeneration

  • Diana BichoEmail author
  • Sandra Pina
  • Rui L. Reis
  • J. Miguel Oliveira
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1058)

Abstract

The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.

Keywords

Commercial products Bone, cartilage, and osteochondral regeneration 

Notes

Acknowledgments

The authors acknowledge the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015) is also greatly acknowledged.

References

  1. 1.
    Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554.  https://doi.org/10.1016/j.tibtech.2012.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Benders KEM, van Weeren PR, Badylak SF et al (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31:169–176.  https://doi.org/10.1016/j.tibtech.2012.12.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Oliveira JT, Reis RL (2011) Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 5:421–436.  https://doi.org/10.1002/term.335 CrossRefPubMedGoogle Scholar
  4. 4.
    Ge Z, Jin Z, Cao T (2008) Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed Mater 3:22001.  https://doi.org/10.1088/1748-6041/3/2/022001 CrossRefGoogle Scholar
  5. 5.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491.  https://doi.org/10.1016/j.biomaterials.2005.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Habibovic P, Yuan H, van der Valk CM et al (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575.  https://doi.org/10.1016/j.biomaterials.2004.09.056 CrossRefPubMedGoogle Scholar
  7. 7.
    Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169.  https://doi.org/10.1002/adma.201403354 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Canadas RF, Pina S, Marques AP et al (2016) Cartilage and bone regeneration—how close are we to bedside? In: Transl. Regen. Med. to Clin. Elsevier, Amsterdam, pp 89–106CrossRefGoogle Scholar
  9. 9.
    Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:S20–S27.  https://doi.org/10.1016/j.injury.2005.07.029 CrossRefPubMedGoogle Scholar
  10. 10.
    Van Norman GA (2016) Drugs and devices: comparison of European and U.S. approval processes. JACC Basic Transl Sci 1:399–412.  https://doi.org/10.1016/j.jacbts.2016.06.003 CrossRefGoogle Scholar
  11. 11.
    Webber MJ, Khan OF, Sydlik SA et al (2014) A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 43:641–656.  https://doi.org/10.1007/s10439-014-1104-7 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dodson BP, Levine AD (2015) Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 15:70.  https://doi.org/10.1186/s12896-015-0190-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Basu J, Ludlow JW (2012) Regulatory and quality control. Dev Tissue Eng Regen Med Prod A Pract Approach 125–148.  https://doi.org/10.1533/9781908818119.125
  14. 14.
    Idowu B, Di Silvio L (2013) Principles of good laboratory practice (GLP) for in vitro cell culture applications. Stand Cell Tissue Eng Methods Protoc 127–147.  https://doi.org/10.1533/9780857098726.2.127
  15. 15.
    Gálvez P, Clares B, Hmadcha A et al (2013) Development of a cell-based medicinal product: regulatory structures in the European Union. Br Med Bull 105:85–105.  https://doi.org/10.1093/bmb/lds036 CrossRefPubMedGoogle Scholar
  16. 16.
    Tyler RS (2013) The goals of FDA regulation and the challenges of meeting them. Health Matrix Clevel 22:423–431PubMedGoogle Scholar
  17. 17.
    Lewin A (2012) Medical device innovation in America: tensions between food and drug law and patent law. Harv J Law Technol 26Google Scholar
  18. 18.
    Dormer NH, Berkland CJ, Detamore MS (2010) Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann Biomed Eng 38:2121–2141.  https://doi.org/10.1007/s10439-010-0033-3 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Elguizaoui S, Flanigan DC, Harris JD et al (2012) Proud osteochondral autograft versus synthetic plugs—contact pressures with cyclical loading in a bovine knee model. Knee 19:812–817.  https://doi.org/10.1016/j.knee.2012.03.008 CrossRefPubMedGoogle Scholar
  20. 20.
    Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24:489–495.  https://doi.org/10.1016/j.bioeng.2007.07.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Schaefer D, Martin I, Jundt G et al (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46:2524–2534.  https://doi.org/10.1002/art.10493 CrossRefPubMedGoogle Scholar
  22. 22.
    Getgood A, Henson F, Skelton C et al (2014) Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J Exp Orthop 1:13.  https://doi.org/10.1186/s40634-014-0013-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kon E, Delcogliano M, Filardo G et al (2009) Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sport Traumatol Arthrosc 17:1312–1315.  https://doi.org/10.1007/s00167-009-0819-8 CrossRefGoogle Scholar
  24. 24.
    Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:n/a.  https://doi.org/10.1002/jor.20958 CrossRefGoogle Scholar
  25. 25.
    Christensen BB, Foldager CB, Jensen J et al (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sport Traumatol Arthrosc 24:2380–2387.  https://doi.org/10.1007/s00167-015-3538-3 CrossRefGoogle Scholar
  26. 26.
    Ishikawa M, Yoshioka K, Urano K et al (2014) Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthr Cartil 22:1902–1909.  https://doi.org/10.1016/j.joca.2014.08.002 CrossRefPubMedGoogle Scholar
  27. 27.
    Strand V, Baraf HSB, Lavin PT et al (2012) A multicenter, randomized controlled trial comparing a single intra-articular injection of Gel-200,?a?new cross-linked formulation of hyaluronic acid, to phosphate buffered saline for treatment of osteoarthritis of the knee. Osteoarthr Cartil 20:350–356.  https://doi.org/10.1016/j.joca.2012.01.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Stanish WD, McCormack R, Forriol F et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Jt Surg Am 95:1640–1650.  https://doi.org/10.2106/JBJS.L.01345 CrossRefGoogle Scholar
  29. 29.
    Shive MS, Hoemann CD, Restrepo A et al (2006) BST-CarGel: in situ chondroinduction for cartilage repair. Oper Tech Orthop 16:271–278.  https://doi.org/10.1053/j.oto.2006.08.001 CrossRefGoogle Scholar
  30. 30.
    Shive MS, Stanish WD, McCormack R et al (2015) BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage 6:62–72.  https://doi.org/10.1177/1947603514562064 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Erggelet C, Endres M, Neumann K et al (2009) Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res 27:1353–1360.  https://doi.org/10.1002/jor.20879 CrossRefPubMedGoogle Scholar
  32. 32.
    Siclari A, Mascaro G, Gentili C et al (2014) Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant. Knee Surg Sport Traumatol Arthrosc 22:1225–1234.  https://doi.org/10.1007/s00167-013-2484-1 CrossRefGoogle Scholar
  33. 33.
    Becher C, Ettinger M, Ezechieli M et al (2015) Repair of retropatellar cartilage defects in the knee with microfracture and a cell-free polymer-based implant. Arch Orthop Trauma Surg 135:1003–1010.  https://doi.org/10.1007/s00402-015-2235-5 CrossRefPubMedGoogle Scholar
  34. 34.
    McNickle AG, Provencher MT, Cole BJ (2008) Overview of Existing Cartilage Repair Technology. Sports Med Arthrosc 16:196–201.  https://doi.org/10.1097/JSA.0b013e31818cdb82 CrossRefPubMedGoogle Scholar
  35. 35.
    Falez F, Sciarretta FV (2015) Treatment of osteochondral symptomatic defects of the knee with salucartilage. Orthop Proc 87-BGoogle Scholar
  36. 36.
    Lange J, Follak N, Nowotny T, Merk H (2006) Ergebnisse der SaluCartilage-implantation bei viertgradigen Knorpelschäden im Bereich des Kniegelenks. Unfallchirurg 109:193–199.  https://doi.org/10.1007/s00113-005-1025-x CrossRefPubMedGoogle Scholar
  37. 37.
    Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405–1412.  https://doi.org/10.1016/S0142-9612(98)00021-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Demoor M, Ollitrault D, Gomez-Leduc T et al (2014) Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 1840:2414–2440.  https://doi.org/10.1016/j.bbagen.2014.02.030 CrossRefGoogle Scholar
  39. 39.
    Barnewitz D, Endres M, Krüger I et al (2006) Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts. Biomaterials 27:2882–2889.  https://doi.org/10.1016/j.biomaterials.2006.01.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Kreuz PC, Müller S, Ossendorf C et al (2009) Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res Ther 11:R33.  https://doi.org/10.1186/ar2638 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ossendorf C, Kaps C, Kreuz PC et al (2007) Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res Ther 9:R41.  https://doi.org/10.1186/ar2180 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Guillemin G, Patat J-L, Fournie J, Chetail M (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567.  https://doi.org/10.1002/jbm.820210503 CrossRefPubMedGoogle Scholar
  43. 43.
    Kon E, Filardo G, Shani J et al (2015) Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res 10:81.  https://doi.org/10.1186/s13018-015-0211-y CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhong SP, Campoccia D, Doherty PJ et al (1994) Biodegradation of hyaluronic acid derivatives by hyaluronidase. Biomaterials 15:359–365CrossRefGoogle Scholar
  45. 45.
    Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127.  https://doi.org/10.1016/S0142-9612(98)00042-8 CrossRefPubMedGoogle Scholar
  46. 46.
    Iii RJW, Gamradt SC, Williams RJ (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571Google Scholar
  47. 47.
    Melton JT, Wilson AJ, Chapman-Sheath P, Cossey AJ (2010) TruFit CB ® bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices 7:333–341.  https://doi.org/10.1586/erd.10.15 CrossRefPubMedGoogle Scholar
  48. 48.
    Carmont MR, Carey-Smith R, Saithna A et al (2009) Delayed Incorporation of a TruFit Plug: perseverance is recommended. Arthrosc J Arthrosc Relat Surg 25:810–814.  https://doi.org/10.1016/j.arthro.2009.01.023 CrossRefGoogle Scholar
  49. 49.
    Hindle P, Hendry JL, Keating JF, Biant LC (2014) Autologous osteochondral mosaicplasty or TruFit® plugs for cartilage repair. Knee Surg Sport Traumatol Arthrosc 22:1235–1240.  https://doi.org/10.1007/s00167-013-2493-0 CrossRefGoogle Scholar
  50. 50.
    Kon E, Filardo G, Perdisa F et al (2014) Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 1:10.  https://doi.org/10.1186/s40634-014-0010-0 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Buda R, Vannini F, Castagnini F et al (2015) Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 39:893–900.  https://doi.org/10.1007/s00264-015-2685-y CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Worthen J, Waterman BR, Davidson PA, Lubowitz JH (2012) Limitations and sources of bias in clinical knee cartilage research. Arthrosc J Arthrosc Relat Surg 28:1315–1325.  https://doi.org/10.1016/j.arthro.2012.02.022 CrossRefGoogle Scholar
  53. 53.
    Bertolo A, Mehr M, Aebli N et al (2012) Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposus-like cells. Eur Spine J 21(Suppl 6):S826–S838.  https://doi.org/10.1007/s00586-011-1975-3 CrossRefPubMedGoogle Scholar
  54. 54.
    Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112.  https://doi.org/10.1023/A:1025034925152 CrossRefPubMedGoogle Scholar
  55. 55.
    Ammerman JM, Libricz J, Ammerman MD (2013) The role of Osteocel Plus as a fusion substrate in minimally invasive instrumented transforaminal lumbar interbody fusion. Clin Neurol Neurosurg 115:991–994.  https://doi.org/10.1016/j.clineuro.2012.10.013 CrossRefPubMedGoogle Scholar
  56. 56.
    McAllister BS (2011) Stem cell-containing allograft matrix enhances periodontal regeneration: case presentations. Int J Periodontics Restorative Dent 31:149–155PubMedGoogle Scholar
  57. 57.
    Scott RT, Hyer CF (2013) Role of cellular allograft containing mesenchymal stem cells in high-risk foot and ankle reconstructions. J Foot Ankle Surg 52:32–35.  https://doi.org/10.1053/j.jfas.2012.09.004 CrossRefPubMedGoogle Scholar
  58. 58.
    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci.  https://doi.org/10.1155/2011/290602
  59. 59.
    Drosos GI (2015) Use of demineralized bone matrix in the extremities. World J Orthop 6:269.  https://doi.org/10.5312/wjo.v6.i2.269 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Abrams GD, Mall NA, Fortier LA et al (2013) BioCartilage: background and operative technique. Oper Tech Sports Med 21:116–124.  https://doi.org/10.1053/j.otsm.2013.03.008 CrossRefGoogle Scholar
  61. 61.
    Kurkijärvi JE, Mattila L, Ojala RO et al (2007) Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil 15:372–378.  https://doi.org/10.1016/j.joca.2006.10.001 CrossRefPubMedGoogle Scholar
  62. 62.
    Gobbi A, Kon E, Berruto M et al (2009) Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation. Am J Sports Med 37:1083–1092.  https://doi.org/10.1177/0363546509331419 CrossRefPubMedGoogle Scholar
  63. 63.
    Marcacci M, Berruto M, Brocchetta D, et al (2005) Articular cartilage engineering with hyalograft(R) C: 3-year clinical results. [Report]. Clin Orthop Relat Res 96–105Google Scholar
  64. 64.
    Tompkins M, Adkisson HD, Bonner KF (2013) DeNovo NT allograft. Oper Tech Sports Med 21:82–89.  https://doi.org/10.1053/j.otsm.2013.03.005 CrossRefGoogle Scholar
  65. 65.
    Kruse DL, Ng A, Paden M, Stone PA (2012) Arthroscopic de novo NT? juvenile allograft cartilage implantation in the talus: a case presentation. J Foot Ankle Surg 51:218–221.  https://doi.org/10.1053/j.jfas.2011.10.027 CrossRefPubMedGoogle Scholar
  66. 66.
    Buckwalter JA, Bowman GN, Albright JP et al (2014) Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J 34:44–49PubMedPubMedCentralGoogle Scholar
  67. 67.
    Gomoll AH (2013) Osteochondral allograft transplantation using the chondrofix implant. Oper Tech Sports Med 21:90–94.  https://doi.org/10.1053/j.otsm.2013.03.002 CrossRefGoogle Scholar
  68. 68.
    Reynolds KL, Bishai SK (2014) In situ evaluation of chondrofix(registered trademark) osteochondral allograft 25 months following implantation: a case report. Osteoarthr Cartil 22:S155–S156.  https://doi.org/10.1016/j.joca.2014.02.288 CrossRefGoogle Scholar
  69. 69.
    Horton MT, Pulido PA, McCauley JC, Bugbee WD (2013) Revision osteochondral allograft transplantations. Am J Sports Med 41:2507–2511.  https://doi.org/10.1177/0363546513500628 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diana Bicho
    • 1
    • 2
    Email author
  • Sandra Pina
    • 1
    • 2
  • Rui L. Reis
    • 1
    • 2
    • 3
  • J. Miguel Oliveira
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of MinhoBarco GMRPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision MedicineUniversity of MinhoBarcoPortugal

Personalised recommendations