Phytotoxicity of Rare Earth Nanomaterials

  • Sheng Feng
  • Yuhui MaEmail author
  • Fang Yang
  • Jinyu Chu
  • Zhiyong Zhang


Rare earth nanomaterials (RENMs) are widely used in various applications, leading to potential release of these materials into the environment. The study of interactions between RENMs and plants are of particular importance. In this review paper, we summarize recent advances on this topic, including three sections: (1) toxicological effects of RENMs on plants, (2) uptake and translation, and (3) transformation. It is expected that this review will provide necessary background information to further advance the knowledge on the phytotoxicity of RENMs.



This work was financially supported by National Natural Science Foundation of China (Grant No. 11575208, 11375009, 11405183, 11675190, 11275215, and 11275218) and the Ministry of Science and Technology of China (Grant No. 2013CB932703).


  1. Barrios AC, Rico CM, Trujillo-Reyes J et al (2015) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563–564:956–964PubMedGoogle Scholar
  2. Birbaum K, Brogioli R, Schellenberg M et al (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723CrossRefPubMedGoogle Scholar
  3. Cui D, Zhang P, Ma Y et al (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1(5):459–465CrossRefGoogle Scholar
  4. Du W, Gardeatorresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893CrossRefPubMedGoogle Scholar
  5. Ge Y, Priester JH, Van De Werfhorst LC et al (2014) Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environ Sci Technol 48(22):13489–13496CrossRefPubMedGoogle Scholar
  6. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels plant and human lymphocytes. Chemosphere 81(10):1253–1262CrossRefPubMedGoogle Scholar
  7. Gorte RJ (2010) Ceria in catalysis: from automotive applications to the water-gas shift reaction. AIChE J 56(5):1126–1135Google Scholar
  8. Guigues S, Bravin MN, Garnier C et al (2014) Isolated cell walls exhibit cation binding properties distinct from those of plant roots. Plant Soil 381(1–2):367–379CrossRefGoogle Scholar
  9. Hernandez-viezcas JA, Castillo-michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423CrossRefPubMedGoogle Scholar
  10. Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385CrossRefPubMedGoogle Scholar
  11. Hong J, Wang L, Sun Y et al (2015) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911PubMedGoogle Scholar
  12. Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033CrossRefPubMedGoogle Scholar
  13. Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135CrossRefPubMedGoogle Scholar
  14. Layet C, Auffan M, Santaella C et al (2017) Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol 51:9756–9764CrossRefPubMedGoogle Scholar
  15. López-Moreno M, de la Rosa G, Herna ndez-Viezcas J et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lópezmoreno ML, Rosa GDL, Castillomichel H et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320CrossRefGoogle Scholar
  17. Lv J, Shen Y, Peng L et al (2010) Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem Commun 46(32):5909–5911CrossRefGoogle Scholar
  18. Ma Y, Kuang L, Xiao H et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279CrossRefPubMedGoogle Scholar
  19. Ma Y, He X, Zhang P et al (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5(4):743–753CrossRefPubMedGoogle Scholar
  20. Ma PA, Xiao H, Li X et al (2013) Rational design of multifunctional upconversion nanocrystals/polymer nanocomposites for cisplatin (IV) delivery and biomedical imaging. Adv Mater 25(35):4898–4905CrossRefPubMedGoogle Scholar
  21. Ma Y, Zhang P, Zhang Z et al (2015a) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9(2):262–270CrossRefPubMedGoogle Scholar
  22. Ma Y, Zhang P, Zhang Z et al (2015b) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674CrossRefPubMedGoogle Scholar
  23. Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1379CrossRefGoogle Scholar
  24. Mattiello A, Filippi A, Pošćić F et al (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6(e57189):1043PubMedPubMedCentralGoogle Scholar
  25. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224CrossRefPubMedGoogle Scholar
  26. Pagano L, Servin AD, De La Torre-Roche R et al (2016) Molecular response of crop plants to engineered nanomaterials. Environ Sci Technol 50(13):7198–7207CrossRefPubMedGoogle Scholar
  27. Peng J, Sun Y, Liu Q et al (2012) Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Res 5(11):770–782CrossRefGoogle Scholar
  28. Rico CM, Hong J, Morales et al (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642CrossRefPubMedGoogle Scholar
  29. Schwabe F, Schulin R, Rupper P et al (2014) Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J Nanopart Res 16(10):1–11CrossRefGoogle Scholar
  30. Schwabe F, Tanner S, Schulin R et al (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7(3):466–477CrossRefPubMedGoogle Scholar
  31. Sokolov S, Kondratenko EV, Pohl MM et al (2013) Effect of calcination conditions on time on-stream performance of Ni/La2 O3 –ZrO2 in low-temperature dry reforming of methane. Int J Hydrogen Energy 38(36):16121–16132CrossRefGoogle Scholar
  32. Spielman-Sun E, Lombi E, Donner E et al (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51(13):7361–7368CrossRefPubMedGoogle Scholar
  33. Wang S, Kurepa J, Smalle JANA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820CrossRefPubMedGoogle Scholar
  34. Wang G, Ma Y, Zhang P et al (2017) Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Environ Pollut 224:392–399CrossRefPubMedGoogle Scholar
  35. Yin W, Zhou L, Ma Y et al (2015) Phytotoxicity, translocation, and biotransformation of NaYF4 upconversion nanoparticles in a soybean plant. Small 11(36):4774–4784CrossRefPubMedGoogle Scholar
  36. Zhang Z, He X, Zhang H et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822CrossRefPubMedGoogle Scholar
  37. Zhang P, Ma Y, Zhang Z et al (2012a) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841CrossRefPubMedGoogle Scholar
  38. Zhang P, Ma Y, Zhang Z (2012b) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6(11):9943–9950CrossRefPubMedGoogle Scholar
  39. Zhang Y, Hou F, Tan Y (2012c) CeO2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics. Chem Commun 48(18):2391–2393CrossRefGoogle Scholar
  40. Zhang P, Ma Y, Zhang Z et al (2015a) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9(1):1–8CrossRefPubMedGoogle Scholar
  41. Zhang W, Ebbs SD, Musante C et al (2015b) Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J Agric Food Chem 63(2):382–390CrossRefPubMedGoogle Scholar
  42. Zhang P, Ma Y, Liu S et al (2017a) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408CrossRefPubMedGoogle Scholar
  43. Zhang P, Xie C, Ma Y et al (2017b) Shape-dependent transformation and translocation of ceria nanoparticles in cucumber plants. Environ Sci Technol Lett 4(9):380–385CrossRefGoogle Scholar
  44. Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J Hazard Mater 225:131–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Feng
    • 1
    • 2
  • Yuhui Ma
    • 1
    Email author
  • Fang Yang
    • 2
  • Jinyu Chu
    • 3
  • Zhiyong Zhang
    • 1
  1. 1.Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina
  3. 3.The High School Affiliated to Beijing Normal UniversityBeijingChina

Personalised recommendations