Penetration and Accumulation of Carbon-Based Nanoparticles in Plants

  • Olga ZaytsevaEmail author
  • Günter Neumann


Carbon-based nanomaterials (nanotubes, fullerenes, graphene) comprise an important class of industrial materials with a broad range of novel applications including composite materials, automotive industry, electronics, environmental applications and others. Constantly growing production volumes of these materials creates serious concerns regarding their potential release into the environment and negative impact on plants including important agricultural crops. During the last decade, a substantial progress has been made in investigation of the impact of carbon nanomaterials on plant physiology and development. Along with that evidences of nanoparticle penetration through cell barriers and their accumulation in plant tissues were reported in numerous studies. The objectives of the present review are to analyse the latest achievements in the area of carbon-based nanoparticle penetration and accumulation in plants and to discuss studies focused on investigation of the mechanisms of nanomaterials penetration and translocation within terrestrial and aquatic plants. The bioaccumulation of nanomaterials in plants and corresponding implications for food chains are also addressed.


Carbon nanomaterials (CNMs) Carbon nanotubes (CNTs) Single-walled carbon nanotubes (SWCNTs) Multi-walled carbon nanotubes (MWCNTs) Fullerenes Graphene Food chain 


  1. Becker L, Bada JL, Winans RE et al (1994) Fullerenes in Allende meteorite. Nature 372:507CrossRefPubMedGoogle Scholar
  2. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222CrossRefPubMedGoogle Scholar
  3. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919CrossRefGoogle Scholar
  4. Berestovsky GN, Ternovsky VI, Kataev AA (2001) Through pore diameter in the cell wall of Chara coralline. J Exp Bot 52(359):1173–1177CrossRefPubMedGoogle Scholar
  5. Borišev M, Borišev I, Župunski M et al (2016) Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One 11(11):e0166248CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257:215–217CrossRefPubMedGoogle Scholar
  7. Carpita N, Sabularse D, Montezinos D et al (1979) Determination of the pore size of cell walls of living plants. Science 205:1144–1147CrossRefPubMedGoogle Scholar
  8. Cedervall T, Hansson LA, Lard M et al (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7(2):e32254CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen G, Qiu J, Liu Y et al (2015) Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep 5:15682CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chinnappan A, Baskar C, Kim H et al (2016) Carbon nanotube hybrid nanostructures: future generation conducting materials. J Chem A 4:9347–9361Google Scholar
  11. Choi W, Lahiri I, Seelaboyina R et al (2010) Synthesis of graphene and its applications. Crit Rev Solid State 35(1):52–71CrossRefGoogle Scholar
  12. De Volder MFL, Tawfick HS, Ray H et al (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRefGoogle Scholar
  13. Ghosh M, Bhadra S, Adegoke A et al (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58CrossRefPubMedGoogle Scholar
  14. Goel A, Howard JB, Vander Sande JB (2004) Size analysis of single fullerene molecules by electron microscopy. Carbon 42:1907–1915CrossRefGoogle Scholar
  15. Grand View Research, Inc (2015) Carbon nanotubes (CNT) market analysis by product (single walled carbon nanotubes (SWCNT), multi walled carbon nanotubes (MWCNT)), by application (polymers, energy, electrical & electronics) and segment forecasts to 2022. Accessed 12 Aug 2017
  16. Hansen SF, Heggelund LR, Besora et al (2016) Nanoproducts – what is actually available to European consumers? Environ Sci Nano 3:169–180CrossRefGoogle Scholar
  17. Horikoshi S, Serpone N (2003) Introduction to nanoparticles. In: Horikoshi S, Serpone N (eds) Microwaves in nanoparticle synthesis, 1st edn. Wiley, Berlin, pp 1–24CrossRefGoogle Scholar
  18. Hu X, Kang J, Lu K et al (2014a) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 4:6122CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hu X, Lu K, Mu L et al (2014b) Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 80:665–676CrossRefGoogle Scholar
  20. Ikhtiari R, Begum P, Watari F et al (2013) Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca sativa). Nano Biomed 5(1):18–24Google Scholar
  21. Jang H, Park YJ, Chen X (2016) Graphene-based flexible and stretchable electronics. Adv Mater 28(22):4184–4202CrossRefPubMedGoogle Scholar
  22. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781CrossRefPubMedGoogle Scholar
  23. Karthik PS, Himaja AL, Singh SP (2014) Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett 15(4):219–237CrossRefGoogle Scholar
  24. Keller AA, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  25. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227CrossRefPubMedGoogle Scholar
  26. Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108:1028–1033CrossRefPubMedGoogle Scholar
  27. Khodakovskaya MV, Kim B, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123CrossRefPubMedGoogle Scholar
  28. Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kovtyukhova NI, Ollivier PJ, Martin BJ et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-size graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRefGoogle Scholar
  30. Lahiani MH, Dervishi E, Chen J et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973CrossRefPubMedGoogle Scholar
  31. Larue C, Pinault M, Czarny B et al (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163CrossRefPubMedGoogle Scholar
  32. Lee BW, Park CH, Song JH et al (2011) Controlling the shapes and electrical conductivities of polyaniline-wrapped MWCNTs. J Nanosci Nanotechnol 11(7):6089–6094CrossRefPubMedGoogle Scholar
  33. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefPubMedGoogle Scholar
  34. Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132CrossRefPubMedGoogle Scholar
  35. Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010CrossRefPubMedGoogle Scholar
  36. Luinge H (2011) Nano-modified materials in aviation: carbon nanotubes for lighter airplane outer shells Konstruktion IW10Google Scholar
  37. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  38. Misra KS, Hammond MR, Phadke AV et al (2007) Occurrence of fullerence bearing shungite suite rock in Mangampeta area, Cuddapah District, Andhra Pradesh. J Geol Soc India 69:25–28Google Scholar
  39. Nair R, Mohamed MS, Gao W et al (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220CrossRefPubMedGoogle Scholar
  40. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  41. Parks AN, Portis LM, Schierz PA et al (2013) Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ Toxicol Chem 32(6):1270–1277CrossRefPubMedGoogle Scholar
  42. Parthasarathy G, Srinivasan R, Vairamani M et al (1998) Occurrence of natural fullerenes in low grade metamorphosed proterozoicshungite from Karelia, Russia. Geochim Cosmochim Acta 62:3541–3544CrossRefGoogle Scholar
  43. Peralta-Videa JR, Lopez ML, Narayan M et al (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41(8–9):1665–1677CrossRefPubMedGoogle Scholar
  44. Ratnikova TA, Podila R, Rao AM et al (2015) Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci World J.
  45. Saito R, Nugraha ART, Hasdeo EH et al (2017) Electronic and optical properties of single wall carbon nanotubes. Top Curr Chem 375(1):7CrossRefGoogle Scholar
  46. Serag MF, Kaji N, Gaillard C et al (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499CrossRefPubMedGoogle Scholar
  47. Shen C, Zhang Q, Li J et al (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609CrossRefPubMedGoogle Scholar
  48. Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 29(12):2905–2914CrossRefPubMedGoogle Scholar
  49. Smirnova EA, Gusev AA, Zaitseva ON et al (2011) Multi-walled сarbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 5(8):99–106Google Scholar
  50. Sun TY, Gottschalk F, Hungerbühler K et al (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRefPubMedGoogle Scholar
  51. Sun L, Wang X, Wang Y et al (2017) Roles of carbon nanotubes in novel energy storage devices. Carbon 122:462–474CrossRefGoogle Scholar
  52. Tan X, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487CrossRefGoogle Scholar
  53. Tiwari AJ, Ashraf-Khorassani M, Marr LC (2016) C60 fullerenes from combustion of common fuels. Sci Total Environ 547:254–260CrossRefPubMedGoogle Scholar
  54. Velasco-Santos C (2003) Naturally produced carbon nanotubes. Chem Phys Lett 373:272–276CrossRefGoogle Scholar
  55. Voytekhovsky YL, Stepenshchikov DG (2003) C72 to C100 fullerenes: combinatorial types and symmetries. Acta Crystallogr A 59:283–285CrossRefPubMedGoogle Scholar
  56. Wagner AY, Livbjerg H, Kristensen PG et al (2010) Particle emissions from domestic gas cookers. Combust Sci Technol 182(10):1511–1527CrossRefGoogle Scholar
  57. Wenzel WW, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut 104:145–155CrossRefGoogle Scholar
  58. Yan S, Zhao L, Li H et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246–247:110–118CrossRefPubMedGoogle Scholar
  59. Yengejeh SI, Kazemi SA, Öchsner A (2017) Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Comput Mater Science 136:85–101CrossRefGoogle Scholar
  60. Yuan H, Hu S, Huang P et al (2010) Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res Lett 297:787Google Scholar
  61. Zaytseva O, Neumann G (2016a) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17CrossRefGoogle Scholar
  62. Zaytseva O, Neumann G (2016b) Phytotoxicity of carbon nanotubes is associated with disturbances of zinc homeostasis. Eur Chem Bull 5(6):238–244Google Scholar
  63. Zaytseva O, Wang Z, Neumann G (2017) Phytotoxicity of carbon nanotubes in soybean as determined by interactions with micronutrients. J Nanopart Res 19:29CrossRefGoogle Scholar
  64. Zhai G, Gutowski SM, Walters KS et al (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49(12):7380–7390CrossRefPubMedGoogle Scholar
  65. Zhang M, Gao B, Chen J et al (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:78CrossRefGoogle Scholar
  66. Zhang B, Wei P, Zhou Z et al (2016) Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 105:145–162CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Crop Science (340a)Hohenheim UniversityStuttgartGermany
  2. 2.Institute of Crop Science (340h)Hohenheim UniversityStuttgartGermany

Personalised recommendations