Advertisement

Nanobiotechnology in the Health Care: The Game and the Goal

  • Asra Parveen
  • Raghunandan Deshpande
Chapter

Abstract

Nanomedicine plays an important role in the future advances of analytical and therapeutic methods. There are various methods to synthesize nanoparticles like biological, physical, and chemical. Nanomaterials are important materials used extensively to study its applications in therapeutic medicines, sensing, optoelectronic, molecular imaging and catalysis, etc. In recent years, nanotechnology has modernized the progress in developing the biological sensors. Nanobiosensor research focuses on the development of innovative technologies for significant contributions in the fields of detection of human and animal diseases. Nanomedicine attempts innovative solutions like glucose sensors, artificial pancreas, biodegradable nanocarriers, and oral delivery of insulin in treating diabetes mellitus. The cardiovascular nanoimaging is a simple diagnosis that helps in real-time tracking during surgery and treatment. Biofunctionalized nanoparticles are under extensive progress for the development of nanomaterial-based drugs and cancer detection. The study deals with the promising complex identification and analysis and treatment of various diseases. The size, shape, stability, and surface characteristics make nanoparticles more attractive and compatible in various fields. This chapter discusses briefly different practices of nanoparticles in important and vast medical areas.

Keywords

Nanotechnology Nanomaterials Nanomedicine Nanobiosensor Healthcare 

References

  1. Alharbi KK, Al-sheikh YA (2014) Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 21(2):109–117.  https://doi.org/10.1016/j.sjbs.2013.11.001 CrossRefPubMedGoogle Scholar
  2. Alyautdin R, Khalin I, Nafeeza MI et al (2014) Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine 9:795–811.  https://doi.org/10.2147/IJN.S52236 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88(1054):20150207.  https://doi.org/10.1259/bjr.20150207 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bao YP, Wei TF, Lefebvre PA et al (2006) Detection of protein analytes via nanoparticle-based bio bar code technology. Anal Chem 78:2055–2059CrossRefPubMedGoogle Scholar
  5. Barry M, Pearce H, Cross L et al (2016) Advances in nanotechnology for the treatment of osteoporosis. Curr Osteoporos Rep 14(3):87–94CrossRefPubMedGoogle Scholar
  6. Beyitler I, Kavukcu S (2017) Use of nanoparticles with Escherichia coli receptors for prophylaxis of recurrent urinary tract infections in children. Med Hypotheses 99:67.  https://doi.org/10.1016/j.mehy.2016.12.015 CrossRefPubMedGoogle Scholar
  7. Buckway B, GhandehariEm H (2016) Nanotheranostics and in-vivo imaging. In: Howard K, Vorup-Jensen T, Peer D (eds) Nanomedicine. Advances in delivery science and technology. Springer, New York, pp 97–129Google Scholar
  8. Caliendo AM, Gilbert DN, Ginocchio CC et al (2013) Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 57(Suppl 3):S139-S170. doi: https://doi.org/10.1093/cid/cit578 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in Diabetes. Trends Mol Med 16(12):584–593.  https://doi.org/10.1016/j.molmed.2010.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Charron DM, Chen J, Zheng G (2015) Theranostic lipid nanoparticles for cancer medicine. Cancer Treat Res 166:103–127.  https://doi.org/10.1007/978-3-319-16555-4_5 CrossRefPubMedGoogle Scholar
  11. Chavez JJ, Torres RD, Cruz IM et al (2012) Nanocarriers for transdermal drug delivery. Res Rep Transdermal Drug Deliv. doi: https://doi.org/10.5772/50314 CrossRefGoogle Scholar
  12. Chen W, Cormode DP, Fayad ZA, Mulder WJM (2011) Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):146–161.  https://doi.org/10.1002/wnan.114 CrossRefPubMedGoogle Scholar
  13. Chhabra R, Tosi G, Grabrucker AM (2015) Emerging use of nanotechnology in the treatment of neurological disorders. Curr Pharm Des 21(22):3111–3130CrossRefPubMedGoogle Scholar
  14. Cormode DP, Skajaa T, Fayad ZA et al (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29(7):992–1000.  https://doi.org/10.1161/ATVBAHA.108.165506 CrossRefPubMedGoogle Scholar
  15. Deb S, Ghosh K, Shetty SD (2015) Nanoimaging in cardiovascular diseases: Current state of the art. Indian Med Res 141(3):285–298CrossRefGoogle Scholar
  16. El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 4:288.  https://doi.org/10.1016/S1388-2481(02)00263-1 CrossRefGoogle Scholar
  17. European Technology Platform on NanoMedicine: Nanotechnology for Health (2006). ISBN 92-79-02203-2Google Scholar
  18. Firdhouse JM, Lalitha P (2013) Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnol 4:137.  https://doi.org/10.1007/s12645-013-0045-4 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Freitas RA (2005) What is nanomedicine? Nanomedicine 1:2–9CrossRefPubMedGoogle Scholar
  20. Fu J, Park B, Siragusa G, Jones L et al (2008) An Au/Si hetero-nanorod-based biosensor for Salmonella detection. Nanotechnology 19.  https://doi.org/10.1088/0957-4484/19/15/155502
  21. Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14. doi: https://doi.org/10.1186/1742-4933-2-14 CrossRefGoogle Scholar
  22. Gourley PL, Hendricks JK, McDonald AE et al (2005) Mitochondrial correlation microscopy and nanolaser spectroscopy: new tools for biphotonic detection of cancer in single cells. Technol Cancer Res Treat 4:585–592CrossRefPubMedGoogle Scholar
  23. Guilbault GG, Pravda M, Kreuzer M, O’Sullivan CK (2004) Biosensors-42 years and counting. Anal Lett 37(8):1481–1496.  https://doi.org/10.1081/AL-120037582 CrossRefGoogle Scholar
  24. Ho YP, Kung MC, Yang S et al (2005) Multiplexed hybridization detection with multicolor localization of quantum dot nanoprobes. Nano Lett 5:1693–1697CrossRefPubMedGoogle Scholar
  25. Hobin JA, Deschamps AM, Bockman R et al (2012) Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles. J Transl Med 10:72.  https://doi.org/10.1186/1479-5876-10-72 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hrapovic S, Liu Y, Male KB et al (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088CrossRefPubMedGoogle Scholar
  27. Jabir NR, Tabrez S, Ashraf GM et al (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 7:4391–4408.  https://doi.org/10.2147/IJN.S33838 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jain KK (2003) Current status of molecular biosensors. Med Device Technol 14:10–15PubMedGoogle Scholar
  29. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53(11):2002–2009CrossRefPubMedGoogle Scholar
  30. Jain KK (2008) Innovations, challenges and future prospects of oncoproteomics. Mol Oncol 2(2):153–160.  https://doi.org/10.1016/j.molonc.2008.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jianrong C, Yuqing M, Nongyue H et al (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Target 15(4):241–252. http://www.ncbi.nlm.nih.gov/pubmed/17487693 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kjems J, Howard KA, Besenbacher F et al (2008) Nanoparticle-mediated treatment for inflammatory diseases. US 20100272813 A1Google Scholar
  34. Kumarasamyraja D, Swamivelmanickam M (2014) Evaluation of wound healing activity of biosynthesized silver nanoparticles from aqueous extract of Cassia auriculata L. Int J Phytopharm 5(3):201–209Google Scholar
  35. Kuo T, Chen C (2017) Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark Res 5(18).  https://doi.org/10.1186/s40364-017-0097-4
  36. Li H, Liu S, Dai Z et al (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9(11):8547–85619.  https://doi.org/10.3390/s91108547 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liebl A, Khunti K, Orozco-Beltran D et al (2015) Health economic evaluation of type 2 diabetes mellitus: A clinical practice focused review. Clin Med Insights Endocrinol Diabetes 8:13–19.  https://doi.org/10.4137/CMED.S20906 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liesenfeld O, Lehman L, Hunfeld KP et al (2014) Molecular diagnosis of sepsis: New aspects and recent developments. Eur J Microbiol Immunol 4(1):1–25.  https://doi.org/10.1556/EuJMI.4.2014.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu JQ, Shimohara K (2007) Molecular computation and evolutionary wetware: a cutting-edge technology for artificial life and nanobiotechnologies. IEEE Trans Syst ManCybern 37:325–336.  https://doi.org/10.1109/TSMCC.2006.887011 CrossRefGoogle Scholar
  40. Malathi S, Nandhakumar P, Pandiyan V et al (2015) Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine 10(1):2207–2218.  https://doi.org/10.2147/IJN.S67947 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:Article ID 238428.  https://doi.org/10.1155/2013/238428 CrossRefGoogle Scholar
  42. Mi Y, Shao Z, Vang J, Person OK, Wang AZ (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7:11.  https://doi.org/10.1186/s12645-016-0024-7 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moraru CI, Panchapakesan CP, Huang Q et al (2003) Nanotechnology: a new frontier in food science. Food Technol 7(12):24–29Google Scholar
  44. Na HB, Lee JH, An K et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 46:5397–5401CrossRefPubMedGoogle Scholar
  45. Narayan RJ (2005) Pulsed laser deposition of functionally gradient diamond like carbon–metal nanocomposites. Diam Relat Mater 14:1319–1330.80CrossRefGoogle Scholar
  46. Nath S, Kaittanis C. Tinkham A et al (2008) Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem 80(4):1033–1038. DOI:  https://doi.org/10.1021/ac701969u CrossRefPubMedGoogle Scholar
  47. Palekar RU, Jallouk AP, Lanza GM et al (2015) Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrasts agents. Nanomedicine (Lond) 10(11):1817–1832.  https://doi.org/10.2217/nnm.15.26 CrossRefGoogle Scholar
  48. Panda BP, Patnaik S, Maharana RL (2017) Current trends in design and development of nanopharmaceutical dosage forms. Bioequiv Bioavailab Int J 1(1):000104Google Scholar
  49. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14.  https://doi.org/10.1602/neurorx.2.1.3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Park KW, Choi H, Kwon BK et al (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106(8):1869–1877.  https://doi.org/10.1021/jp013168v CrossRefGoogle Scholar
  51. Parveen A, Rao S (2014) Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. J Clust Sci 26:775–788.  https://doi.org/10.1007/s10876-014-0744-y CrossRefGoogle Scholar
  52. Parveen A, Rao S (2016) Synthesis of silver nanoparticles from plants and their applications. In: Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 449–465.  https://doi.org/10.1007/978-981-10-1917-3_19 CrossRefGoogle Scholar
  53. Parveen A, Roy AS, Rao S (2012) Biosynthesis and characterization of silver nanoparticles from Cassia auriculata leaf extract and in vitro evaluation of antimicrobial activity. IJABPT 3:222–228Google Scholar
  54. Parveen A, Ali T, Malik W et al (2015) Facile biological approach for immobilization, physicochemical characterization and antibacterial activity of noble metals nanocomposites. Mater Lett 148:86–90.  https://doi.org/10.1016/jmatlet201502059 CrossRefGoogle Scholar
  55. Pedrosa P, Baptista PV (2015) Gold and silver nanoparticles for diagnostics of infection. In: Ray M, Kon K (eds) Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Academic Press, Amsterdam, pp 1–18.  https://doi.org/10.1016/B978-0-12-801317-5.00001-3 Google Scholar
  56. Peran M, Garcia MA, Lopez-Ruiz E et al (2013) How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials 6:1333–1359.  https://doi.org/10.3390/ma6041333 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pryzhkova M (2013) Concise review: carbon nanotechnology: perspectives in stem cell research. Stem Cells Transl Med 2:376–383CrossRefPubMedPubMedCentralGoogle Scholar
  58. Raghunandan D, Ravishankar B, Ganachari S et al (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2:57–65.  https://doi.org/10.1007/s12645-011-0014-8 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rai AJ (2007) Biomarkers in translational research: Focus on discovery, development and translation of protein biomarkers to clinical immunoassays. Expert Rev Mol Diagn 7(5):545–553CrossRefPubMedGoogle Scholar
  60. Rai M, Gade A, Gaikwad S et al (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23(1):14–24Google Scholar
  61. Rakowska PD, Ryadnov MG (2011) Nano-enabled biomarker discovery and detection. Biomar Med 5(3).  https://doi.org/10.2217/bmm.11.26 CrossRefPubMedGoogle Scholar
  62. Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications: a review. Rev Adv Mater Sci 36:62–69Google Scholar
  63. Sharma AD (2016) Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system. Iowa State University Graduate thesis and Dissertations. Paper 15082Google Scholar
  64. Sharma G, Sharma AR, Nam JS et al (2015) Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnolgy 13(74.)  https://doi.org/10.1186/s12951-015-0136-y
  65. Soni S, Ruhela RK, Medhi B (2016) Nanomedicine in central nervous system (CNS) disorders: A present and future prospective. Adv Pharm Bull 6(3):319–335.  https://doi.org/10.15171/apb.2016.044 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Swierczewska M, Liu G, Lee S et al (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41(7):2641–2655.  https://doi.org/10.1039/c1cs15238f CrossRefPubMedGoogle Scholar
  67. Veiseh O, Tang BC, Whitehead KA et al (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57.  https://doi.org/10.1038/nrd4477 CrossRefPubMedGoogle Scholar
  68. Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6(1):9–26.  https://doi.org/10.1039/c3ib40165k CrossRefGoogle Scholar
  69. Woolf AD (2000) The bone and joint decade 2000-2010. Ann Rheum Dis 59:81–82.  https://doi.org/10.1136/ard.59.2.81 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhu C, Yang G, Li H et al (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249.  https://doi.org/10.1021/ac5039863 CrossRefPubMedGoogle Scholar
  71. Zhu X, Radovic-Moreno AF, Wu J et al (2014) Nanomedicine in the management of microbial infection—overview and perspectives. Nano Today 9(4):478–498.  https://doi.org/10.1016/j.nantod.2014.06.003 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Asra Parveen
    • 1
  • Raghunandan Deshpande
    • 1
  1. 1.H.K.E.S’s Matoshree Taradevi Rampure Institute of Pharmaceutical SciencesGulbargaIndia

Personalised recommendations